Effects of the Additives on Etching Characteristics of Aluminum Foil

첨가제에 의한 알루미늄박의 에칭특성변화

  • Kim, Seong-Gap (School of Metallurgical and Materials Engineering, Kookmin University) ;
  • Shin, Dong-Cheol (Dept, of Materialx Sungnam Polytechnec Col) ;
  • Jang, Jae-Myeong (School of Metallurgical and Materials Engineering, Kookmin University) ;
  • Lee, Jong-Ho (Department of Chemistry, Hanseo University) ;
  • Oh, Han-Jun (dept, of chemistry, Hanseo University) ;
  • Chi, Chung-Su (School of Metallurgical and Materials Engineering, Kookmin University)
  • 김성갑 (국민대학교 금속재료공학부) ;
  • 신동철 (성남기능대학 재료과) ;
  • 장재명 (국민대학교 금속재료공학부) ;
  • 이종호 (한서대학교 화학과) ;
  • 오한준 (한서대학교 재료공학과) ;
  • 지충수 (국민대학교 금속재료공학부)
  • Published : 2001.01.01

Abstract

The effects of additives in the HCI etching solution on etching behaviors of aluminum foil as dielectric film for electrolytic capacitors were investigated. The etch pits formed in 1M hydrochloric acid containing ethylene glycol as an additive contain more fine and homogeneous etch tunnels compared to those in 1 M hydrochloric acid only, which led to the increase in the effective internal surface area of aluminum foil. After anodizing of aluminum foil etched in etching solutions, the LCR meter results have shown that the capacitance of dielectric film etched in hydrochloric acid with ethylene glycol was increased remarkably compared to that etched in hydrochloric acid only.

고순도알루미늄 유전체의 내부표면적을 증가시키기 위하여 1M의 염산 에칭용액에 첨가제를 사용했을 때 나타나는 에칭특성의 변화를 조사하였다. 염산용액에 에틸렌글리콜이 첨가된 혼합용액에서 에칭을 실시했을 경우 알루미늄 기지 표면에 미세하고 균일한 에치피트가 형성되어 표면적 증가 효과가 크게 나타났으며, 또한 양극 산화 후 측정된 정전용량의 결과에서도 에틸렌 글리콜이 첨가된 에칭액에서 제조된 유전체는 표면적 증가에 의한 높은 정전용량 값을 나타냈다.

Keywords

References

  1. A. Hibino, M. Tamaki, Y. Watanabe, and T. Oki, 輕金屬, 42, 440 (1992)
  2. H. Fchelscher, Werkstoff and Korrosion, 33, 146 (1982) https://doi.org/10.1002/maco.19820330305
  3. A. Hibino, and T. Oki, 佳友輕金屬, 34, 199 (1993)
  4. E. Makino, K. Takeda, T. Yajima, T. Sato, and E. Suganuma, 金屬表面技術, 39, 446 (1988)
  5. N. Osawa, K. Fukuoka, Z. Tanabe, 佳友輕金屬技報, 35, 90 (1994)
  6. L. K. Dyer, and R. S. Alwitt, J. Electrochem.Soc. 128, 3000 (1981) https://doi.org/10.1149/1.2127408
  7. V. Srinivasan, and J. W. Weidner, ibid, 143, 880 (2000) https://doi.org/10.1149/1.1393286
  8. R. S. Alwitt, ibid, 134, 1891 (1987) https://doi.org/10.1149/1.2100784
  9. Y. Li, H. Shimada, M. Sakairi, K. Shigyo, H. Takahashi, and M. Seo, ibid, 144, 866 (1997) https://doi.org/10.1149/1.1837501
  10. D. N. Lee, J of Korean Institute of Engineering, 29, 301 (1996)
  11. J. Schere, O. M. Magnussen, T. Ebel, R. J. Behn, Corrosion Sci, 41, 35 (1999) https://doi.org/10.1016/S0010-938X(98)00128-0
  12. J. J. Jeong, C. H. Choi, and D. N. Lee, J. Mat. Sci, 31, 5811 (1996) https://doi.org/10.1007/BF01160833
  13. J. Flis, and L. Kowalczyk, J. Appl. Electrochem, 25, 501 (1995) https://doi.org/10.1007/BF00260695
  14. W. J. Rudd and J. C. Scully, Corrosion Sci. 20, 611 (1980) https://doi.org/10.1016/0010-938X(80)90098-0
  15. 김성갑, 유인종, 장재명, 오한준, 지충수, 한국재료학회, 10, 369 (2000)
  16. D. Goad, J. Electrochem. Soc, 144, 1965 (1997) https://doi.org/10.1149/1.1837730
  17. H. Takahashi, M. Nagayama, Electrochim. Acta, 23, 279 (1978) https://doi.org/10.1016/0013-4686(78)85058-0
  18. H. Takahashi, M. Nagayama, Corr. Sci, 18. 911 (1978) https://doi.org/10.1016/0010-938X(78)90012-4
  19. 泳田伊佐也, 알루미늄 건식전해콘덴서, 일본축전지 공업주식회사, 1982
  20. H. Takahashi, H. Kamada, M. Kakairi, K. Takahiro, S. Nagata, and S. Yamaguchi, Electrochem. Soc. Proceedings, 3, 253 (1998)
  21. P. Carbonini, T. Monetta, D. B. Mitton, F. Bellucci, P. Mastroardi, and B. Scatteia, J. Appl. Electrochem, 27, 1135 (1997) https://doi.org/10.1023/A:1018459214994