• Title/Summary/Keyword: Acid-base models

Search Result 26, Processing Time 0.023 seconds

Analysis of 'Ignorance' in Acid-base Models Contents of Chemistry I and Chemistry II Textbooks & Teacher's Guides in 2009 & 2015 Revised Curriculum (2009·2015 개정 교육과정 화학 I 및 화학 II 교과서 및 교사용 지도서에 제시된 산·염기 모델 내용에 대한 '이그노런스' 분석)

  • Lyu, Eun-Ju;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.3
    • /
    • pp.175-188
    • /
    • 2020
  • The purpose of this study was to analyze chemistry textbooks and teachers' guidebooks from the perspective of 'Ignorance', one of the important features of model. This is because the emphasis is on developing modeling capabilities for students in the 2015 Revised Curriculum. For this, Arrhenius model and Brønsted-Lowry model were selected as acid and base models in neutralization reaction which are important contents in chemistry curriculum. The analysis criteria of this study were extracted by analyzing previous studies and four general chemistry textbooks dealing with 'Ignorance' related to acid and base neutralization reaction. Based on the analysis criteria, we analyzed nine chemistry I textbooks and teacher's guides and six chemistry II textbooks and teacher's guides of the 2015 revised curriculum. In addition, we analyzed contents of four chemistry I textbooks and teacher's guides and three chemistry II textbooks and teacher's guides in the 2009 revised curriculum for comparison according to revised curriculums. We analyzed the contents related to the concept of 'neutralization reaction', 'neutrality', 'quantitative relation of neutralization reaction', 'degree of ionization', and 'ionization constant'. Based on the results of this study, we proposed a way to present 'Ignorance' of the models in teachers' guidebooks that chemistry teachers can understand 'Ignorance' of model and teach modeling capabilities for students.

Composition of Biologically Active Substances and Antioxidant Activity of New Zealand Deer Velvet Antler Extracts

  • Je, Jae-Young;Park, Pyo-Jam;Kim, Eun-Kyung;Kim, Hyun-A;Lim, Dong-Hwan;Jeon, Byong-Tae;Ahn, Chang-Bum
    • Food Science of Animal Resources
    • /
    • v.30 no.1
    • /
    • pp.20-27
    • /
    • 2010
  • Deer velvet antler was subjected to the extraction process using boiling water at three different temperatures (100, 110 and $120^{\circ}C$) and 70% ethanol solution. Functional components such as uronic acid, sulfated-glycosaminoglycans (sulfated-GAGs) and sialic acid in the extracts were analyzed, and their antioxidant activities were investigated using several in vitro models. Uronic acid and sulfated-GAGs content of each extract significantly decreased with increasing extraction temperature (p<0.05), while the residues obtained from the upper and middle part of the antler had a higher uronic acid content than the residues obtained from the base section. Sialic acid contents were highest in compounds extracted at $110^{\circ}C$, followed by 120 and $100^{\circ}C$. The 70% ethanol extracts also had a high levels of uronic acid content, but not for sulfated-GAGs and sialic acid. All extracts showed good antioxidant ability in a dose-dependant manner, with the $100^{\circ}C$ residue exhibiting the strongest activity compared to the 110 and $120^{\circ}C$ extracts. In relation to the hydroxyl radical scavenging activity and reduction power, the 70% ethanol extract exhibited the strongest activity. Furthermore, the velvet antler extracts inhibited apoptosis in hydrogen peroxide-induced PC-12 cells.

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma - Part I

  • Sun, Yong-Bin
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.123-126
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that EMC filler of silica wears die surface roughened, which results in increase of adhesion strength. As big differences in experimental results from semiconductor manufacturers are dependent on EMC models, however, chemisorptions or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2$, $N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic and vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma Part I

  • Sun, Yong-Bin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.31-34
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that the silica as a filler in EMC (epoxy molding compound) wears die surface to be roughened, which results in increase of adhesion strength. As the sticking behavior, however, showed strong dependency on the EMC models based on the experimental results from different semiconductor manufacturers, chemisorption or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2, N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic or vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF

Factors Affecting In vitro True Digestibility of Napiergrass

  • Chen, Chia-Sheng;Wang, Su-Min;Hsu, Jih-Tay
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.507-513
    • /
    • 2006
  • Changes of in vitro true digestibility (IVTD) of Napiergrass (Pennisetum purpureum) were determined by a filter bag system, and their relationships to chemical composition, leaf to stem ratio, plant height, geographic location, climatic factors and harvest interval were studied and used to develop prediction models for the crude protein (CP), acid-detergent fiber (ADF), and neutral-detergent fiber (NDF) contents and IVTD. Partitioning the total variance of IVTD of Napiergrass showed that 80% was attributable to the effect of harvest interval. Days of growth, plant height, leaf/stem ratio, CP, ADF and NDF of Napiergrass had highly significant relationships (p<0.01) with IVTD. The highest coefficient of correlation between the ADF, NDF, and IVTD of Napiergrass and growth degree days was obtained when the base temperature was set at $0^{\circ}C$. Growth degree days could predict ADF, NDF, and IVTD of Napiergrass more accurately than plant height, and plant height is not suitable to predict IVTD.

Characterization of the Purified Ca-type Bentonil-WRK Montmorillonite and Its Sorption Thermodynamics With Cs(I) and Sr(II)

  • Seonggyu Choi;Bong-Ju Kim;Surin Seo;Jae-Kwang Lee;Jang-Soon Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.427-438
    • /
    • 2023
  • Thermodynamic sorption modeling can enhance confidence in assessing and demonstrating the radionuclide sorption phenomena onto various mineral adsorbents. In this work, Ca-montmorillonite was successfully purified from Bentonil-WRK bentonite by performing the sequential physical and chemical treatments, and its geochemical properties were characterized using X-ray diffraction, Brunauer-Emmett-Teller analysis, cesium-saturation method, and controlled continuous acid-base titration. Further, batch experiments were conducted to evaluate the adsorption properties of Cs(I) and Sr(II) onto the homoionic Ca-montmorillonite under ambient conditions, and the diffuse double layer model-based inverse analysis of sorption data was performed to establish the relevant surface reaction models and obtain corresponding thermodynamic constants. Two types of surface reactions were identified as responsible for the sorption of Cs(I) and Sr(II) onto Ca-montmorillonite: cation exchange at interlayer site and complexation with edge silanol functionality. The thermodynamic sorption modeling provides acceptable representations of the experimental data, and the species distributions calculated using the resulting reaction constants accounts for the predominance of cation exchange mechanism of Cs(I) and Sr(II) under the ambient aqueous conditions. The surface complexation of cationic fission products with silanol group slightly facilitates their sorption at pH > 8.

The XPS and SEM Evaluation of Various Technique for Cleansing and Decontamination of The Rough Surface Titanium Implants (수종의 방법으로 임프란트 표면 처치후 표면의 형태 및 성분 변화 분석에 관한 연구)

  • Kim, Sun-bong;Yim, Sung-Bin;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.749-763
    • /
    • 2001
  • Osseointegrated titanium implants have become an integral therapy for the replacement of teeth lost. For dental implant materials, titanium, hydroxyapatite and alumina oxide have been used, which of them, titanium implants are in wide use today. Titanium is known for its high corrosion resistance and biocompatability, because of the high stability of oxide layer mainly consists of $TiO_2$. With the development of peri-implantitis, the implant surface is changed in surface topography and element composition. None of the treatments for cleaning and detoxification of implant surface is efficient to remove surface contamination from contaminated titanium implants to such extent that the original surface elemental composition. In this sights, the purpose of this study was to evaluate rough surface titanium implants by means of scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS) with respect to surface appearance and surface elemental composition. Moreover, it was also the aim to get the base for treatments of peri-implantitis. For the SEM and XPS study, rough surface titanium models were fabricated for control group. Six experimental groups were evaluated: 1) long-time room exposure, 2 ) air-powder abrasive cleaning for 1min, 3) burnishing in citric acid(pH1) for 1min, 4) burnishing in citric acid for 3min, 5) burnishing in tetracycline for 1min, 6) burnishing in tetracycline for 3min. All experimental treatments were followed by 1min of rinsing with distilled water. The results were as follows: 1. SEM observations of all experimental groups showed that any changes in surface topography were not detected when compared with control group. (750 X magnification) 2. XPS analysis showed that in all experimental groups, titanium and oxygen were increased and carbon was decreased, when compared with control group. 3. XPS analysis showed that the level of titanium, oxygen and carbon in the experimental group 3(citric acid treatment for 1min, followed by 1min of distilled water irrigation) reached to the level of control group. 4. XPS analysis showed that significant differences were not detected between the experimental group 1 and the other experimental groups except of experimental group 3. The Ti. level of experimental group 2, airpowder abrasive treatment for lmin followed by 1min of saline irrigation, was lower than the Ti. level of tetracycline treated groups, experimental group 5 and 6. From the result of this study, it may be concluded that the 1min of citric acid treatment followed by same time of rinsing with distilled water gave the best results from elemental points of view, and can be used safely to treat peri-implantitis.

  • PDF

An Overview of Geoenvironmental Implications of Mineral Deposits in Korea (한반도 광상 성인유형에 따른 환경 특성)

  • 최선규;박상준;이평구;김창성
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.1-19
    • /
    • 2004
  • Metallic deposits in Korea have a variety of genetic types such as hydrothermal veins, skarns, hydrothermal replacement and alaskite deposits and so on. Geological, mineralogical and geochemical features including host rock, wall-rock alteration, ore and gangue mineralogy, mineral texture and secondary mineralogy related to weathering process control the environmental signatures of mining areas. The environmental signatures of metallic deposits closed from early 1970s to late 1990s in Korea show complicate geochemistry and mineralogy due to step weathering of primary and secondary minerals such as oxidation-precipitation-remobilization. The potentiality of low pH and high heavy metal Concentration s from acid mine drainage is great in base-metal deposits associated with polymetallic mineralization, breccia-pipe type and Cretaceous hydrothermal Au veins with the amount of pyrite whereas skam, hydrothermal replacement, hydrothermal Cu and Au-Ag vein deposits are in low contamination possibility. The geoenvironmental models reflecting the various geologic features closely relate to disuibution of sulfides and carbonates and their ratios and finally effect on characteristics of environmental signatures such as heavy metal species and their concentrations in acid mine drainage.

Kinetics of Cr(VI) Sorption/Reduction from Aqueous Solution on Activated Rice Husk

  • El-Shafey, E.I.;Youssef, A.M.
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.171-179
    • /
    • 2006
  • A carbonaceous sorbent was prepared from rice husk via sulphuric acid treatment. After preparation and washing, the wet carbon with moisture content 85% was used in its wet status in this study due to its higher reactivity towards Cr(VI) than the dry carbon. The interaction of Cr(VI) and the carbon was studied and two processes were investigated in terms of kinetics and equilibrium namely Cr(VI) removal and chromium sorption. Cr(VI) removal and chromium sorption were studied at various initial pH (1.6-7), for initial Cr(VI) concentration (100 mg/l). At equilibrium, maximum Cr(VI) removal occurred at low initial pH (1.6-2) where, Cr(III) was the only available chromium species in solution. Cr(VI) removal, at such low pH, was related to the reduction to Cr(III). Maximum chromium sorption (60.5 mg/g) occurred at initial pH 2.8 and a rise in the final pH was recorded for all initial pH studied. For the kinetic experiments, approximate equilibrium was reached in 60-100 hr. Cr(VI) removal data, at initial pH 1.6-2.4, fit well pseudo first order model but did not fit pseudo second order model. At initial pH 2.6-7, Cr(VI) removal data did not fit, anymore, pseudo first order model, but fit well pseudo second order model instead. The change in the order of Cr(VI) removal process takes place in the pH range 2.4-2.6 under the experimental conditions. Other two models were tested for the kinetics of chromium sorption with the data fitting well pseudo second order model in the whole range of pH. An increase in cation exchange capacity, sorbent acidity and base neutralization capacity was recorded for the carbon sorbent after the interaction with acidified Cr(VI) indicating the oxidation processes on the carbon surface accompanying Cr(VI) reduction.

  • PDF

Enhancing the Creative Problem Solving Skill by Using the CPS Learning Model for Seventh Grade Students with Different Prior Knowledge Levels

  • Cojorn, Kanyarat;Koocharoenpisal, Numphon;Haemaprasith, Sunee;Siripankaew, Pramuan
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.8
    • /
    • pp.1333-1344
    • /
    • 2012
  • This study aimed to enhance creative problem solving skill by using the Creative Problem Solving (CPS) learning model which was developed based on creative problem solving approach and five essential features of inquiry. The key strategy of the CPS learning model is using real life problem situations to provide students opportunities to practice creative problem solving skill through 5 learning steps: engaging, problem exploring, solutions creating, plan executing, and concepts examining. The science content used for examining the CPS learning model was "matter and properties of matter" that consists of 3 learning units: Matter, Solution, and Acid-Base Solution. The process to assess the effectiveness of the learning model used the experimental design of the Pretest-Posttest Control-Group Design. Seventh grade-students in the experimental group learned by the CPS learning model. At the same time, students at the same grade level in the control group learned by conventional learning model. The learning models and students' prior knowledge levels were served as the independent variables. The creative problem solving skill was classified in to 4 aspects in: fluency, flexibility, originality, and reasoning. The results indicated that in all aspects, the students' mean scores of creative problem solving between students in experimental group and control group were significantly different at the .05 level. Also, the progression of students' creative problem solving skills was found highly progressed at the later instructional periods. When comparing the creative problem solving scores between groups of students with different levels of prior knowledge, the differences of their creative problem solving scores were founded at .05 level. The findings of this study confirmed that the CPS learning model is effective in enhancing the students' creative problem solving skill.