• Title/Summary/Keyword: Acid pretreatment

Search Result 748, Processing Time 0.026 seconds

Production of Fermentable Sugar from Lipid Extracted Algae using Hot Water Pretreatment (열수전처리를 이용한 탈지미세조류로부터 발효당 생산 공정 개발)

  • Lee, Jihyun;Shin, Seulgi;Choi, Kanghoon;Jo, Jaemin;Kim, JinWoo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.443-447
    • /
    • 2016
  • The microalgae have cellulose as a main structural component of their cell wall and the lignin content in microalgae is much lower than other lignocellulosic biomass. Therefore, fermentable sugar production from microalgae (Tetraselmis KCTC 12236BP) can be carried out under pretreatment without high temperature and high pressure. It was investigated that the effect of hot-water pretreatment using sulfuric acid for lipid extracted algae which is expected to be a next generation biomass. The effects of three major variables including extraction temperature, acid concentration and time on the enzymatic hydrolysis were investigated. Among the tested variables, temperature and acid concentration showed significant effects and optimum pretreatment conditions for the economic operation criteria were obtained as follows: reaction temperature of $120^{\circ}C$, sulfuric acid concentration of 2 mol and pretreatment time of 40 min. Under the optimum conditions of acidic hot water pretreatment, experimentally obtained hydrolysis yield were 95.9% which showed about 2.1 fold higher compared with enzymatic hydrolysis process. Therefore, acid pretreatment under mild condition was proven to be an effective method for fermentable sugar production from lipid extracted microalgae.

Levulinic Acid Production from Lignocellulosic Biomass by co-solvent Pretreatment with NaOH/THF (NaOH/THF 공용매 전처리 목질계 바이오매스로부터 레불린산 생산)

  • Seung Min Lee;Seokjun Han;Jun Seok Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.265-272
    • /
    • 2023
  • Lignocellulosic biomass is essential to pretreatment because of having rigid structures and a lot of lignin. Among methods of pretreatment, using THF solvents has the advantage of being easy to reuse. THF (Tetrahydrofuran) used as a co-solvent with water or ionic solvent that is inexpensive and can remove lignin over a wide range of reaction conditions. NaOH (Sodium hydroxide) has been demonstrated to preferentially solvate lignin from cellulose. Thus, NaOH was used as a pretreatment co-solvent for the fractionation of lignin by destroying the ether bond to amend for hydrolysis and expand the surface area of cellulose and hemicellulose. In this experiment, lignin was removed by the NaOH/THF co-solvent pretreatment process to characteristics for the pretreatment and obtain the optimal levulinic acid conversion yield through the acid catalyst conversion process. the NaOH/THF co-solvent system was conducted in various ratios of co-solvent under a total of 16 conditions. And the temperature was 180 ℃ during to 60 mins. The optimum condition of co-solvent is NaOH 5 wt%/THF 90:10(v/v%), 76.8% glucan content was obtained through this co-solvent pretreatment, and 90.1% lignin was removed. In the acid catalyst conversion process, which is a subsequent pretreatment process, the experiment was conducted under the conditions of 30 to 90 min of reaction time and 160 ℃ to 200 ℃ reaction temperature. The optimum condition of acid catalyst conversion process is 60min reaction time under of 180 ℃, and it obtained 84.7% of levulinic aicd conversion yield.

Pretreatment of Helianthus tuberosus Residue by Two-Stage Flow Through Process (2단 흐름형 침출공정에 의한 돼지감자 줄기의 전처리)

  • Park, Yong Cheol;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.417-424
    • /
    • 2015
  • In this study, the pretreatment of Helianthus tuberosus residue had been performed. The two-stage pretreatment on flow-through process were applied in the interests of increase of sugar production yield on enzymatic saccharification. The delignification by aqueous ammonia and the fractionation of hemicellulose by sulfuric acid solution as pretreatment solution were confirmed for effects of enzymatic saccharification. Two-stage pretreatment process was performed using aqueous ammonia and sulfuric acid. The first step was performed with aqueous ammonia for 40 min at $163.2^{\circ}C$ and the second step was performed with sulfuric acid solution for 20 min at $169.7^{\circ}C$. And then, the first step was performed with sulfuric acid solution and the second step was pretreated with aqueous ammonia. At this time, the glucose production was 30.7 g and the glucose yield was 72.4% in the first step process with aqueous ammonia. And, the glucose production was 20.9 g and the glucose yield was 49.3% in the first step process with sulfuric acid solution.

Solubilization of Sewage Sludge by Microwave Pretreatment and Elutriated Acid Fermentation (Microwave를 이용한 하수슬러지의 전처리 특성 및 회분식 세정산발효를 이용한 슬러지 가용화)

  • Lee, Won-Sic;Hong, Seung-Mo;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1130-1136
    • /
    • 2006
  • This work elucidates the effects of pretreatment of the sewage sludge from wastewater treatment plant by microwave irradiation on elutriated acid fermentation. These experiments typically fell into two process; pretreatment as microwave irradiation and elutriated acid fermentation for hydrolysis and acidification as main process of primary sludge. The results of maximum solubilization rate of B, D primary and secondary sludge were 0.042, 0.086 and 0.15 gSCODprod./gICODin and the optimum irradiation time of microwave on 2,450 MHz and 900 W were 5 min. for primary sludge and 7 min. for secondary sludge. From batch tests on elutriated acid fermentation that was used the pretreated primary sludge as microwave, the optimum pH and HRT (hydraulic retention time) were 7 and 5 days at $35^{\circ}C$ condition.

Effects of Dilute Acid Pretreatment on Enzyme Adsorption and Surface Morphology of Liriodendron tulipifera

  • Min, Byeong-Cheol;Koo, Bon-Wook;Gwak, Ki-Seob;Yeo, Hwan-Myeong;Choi, Joon-Weon;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.187-195
    • /
    • 2011
  • In this study, dilute acid pretreatment of $Liriodendron$ $tulipifera$ was performed for enzymatic hydrolysis. As the pretreatment temperature was increased, enzymatic hydrolysis and enzyme adsorption yield also increased. The highest enzymatic hydrolysis yield was 57% (g/g) and enzyme adsorption was 44% (g/g). Enzymatic hydrolysis yield was determined with weight loss of pretreated biomass by enzyme, and enzyme adsorption was a percentage of enzyme weight attaching on pretreated biomass compared with input enzyme weight. When $L.$ $tulipifera$ was pretreated with 1% sulfuric acid at $160^{\circ}C$ for 5 min., hemicellulose was significantly removed in pretreatment, but the lignin contents were constant. Other changes in surface morphology were detected on biomass pretreated at $160^{\circ}C$ by a field emission scanning electron microscope (FESEM). A large number of spherical shapes known as lignin droplets were observed over the entire biomass surface after pretreatment. Hemicellulose removal and morphological changes improved enzyme accessibility to cellulose by increasing cellulose exposure to enzyme. It is thus evidence that enzyme adsorption is a significant factor to understand pretreatment effectiveness.

Changes in the Quality Characteristics of Autoclaving on Salmon Frame with Citric Acid Pretreatment (구연산 처리 연어 frame의 연화 후 저장 중 품질 변화)

  • LIM, Hyun-Jung;PARK, Seul-Ki;KIM, Bo-Kyoung;LEE, Won-Kyung;MIN, Jin-Ki;CHO, Young-Je
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.4
    • /
    • pp.973-980
    • /
    • 2015
  • This study was done to investigate the quality characteristics of salmon frame with citric acid pretreatment. Sliced salmon frame samples were cured in soy sauce, sugar, pepper, and sodium nitrate for 12 h and then dried at 3 h and then dried at $60^{\circ}C$ for 3 h. As the autoclaving at $130^{\circ}C$ for 15 min, the pH, moisture content, crude ash, crude fat, crude protein, acid value (AV), peroxide value (POV), volatile basic nitrogen (VBN), trimethylamine (TMA), total plate count and E. coli were measured at $4^{\circ}C$, $25^{\circ}C$ and $35^{\circ}C$ of storage days. The AV, POV, VBN, TMA and total plate count for all samples significantly increased as during storage days (p<0.05). All samples of storage, for autoclaving on salmon frame, there were no growth on E.coli. In the making of autoclaving on salmon frame, technologies for more safety from microbial growth should accompany pretreatment with citric acid.

Conversion of Glucose and Xylose to 5-Hydroxymethyl furfural, Furfural, and Levulinic Acid Using Ethanol Organosolv Pretreatment under Various Conditions

  • Ki-Seob, GWAK;Chae-Hwi, YOON;Jong-Chan, KIM;Jong-Hwa, KIM;Young-Min, CHO;In-Gyu, CHOI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.475-489
    • /
    • 2022
  • The objective of this study was to understand the conversion characteristics of glucose and xylose using the major monosaccharide standards for lignocellulosic biomass. The acid-catalyzed organosolv pretreatment conducted using ethanol was significantly different from the acid-catalyzed process conducted in an aqueous medium. 5-hydroxymethylfurfural (5-HMF), levulinic acid and furfural were produced from glucose conversion. The maximum yield of 5-HMF was 5.5%, at 200℃, when 0.5% sulfuric acid was used. The maximum yield of levulinic acid was 21.5%, at 220℃, when 1.0% sulfuric acid was used. Furfural was produced from xylose conversion and under 0.5% sulfuric acid, furfural reached the maximum yield 48.5% at 210℃. Ethyl levulinate and methyl levulinate were also formed from the glucose standard following the esterification reaction conducted under conditions of the combined conversion method, which proceeded under both ethanol-rich and water-rich conditions.

Optimization of Two-stage Pretreatment from Soybean Hull for Efficient Glucose Recovery

  • Jung, Ji-Young;Choi, Myung-Suk;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.78-90
    • /
    • 2012
  • Soybean hull is an attractive feedstock for glucose production. To increase the glucose conversion in acid hydrolysis, a pretreatment method combined steam explosion with alkali pretreatment for soybean hull was studied. For first step pretreatment, steam explosion conditions (log Ro 2.45) were optimized to obtain maximum solid recovery and cellulose content. In the second step pretreatment, the conditions for potassium hydroxide pretreatment of steam exploded soybean hull were optimized by using RSM (response surface methodology). The optimum conditions for minimum lignin content were determined to be 0.6% potassium hydroxide concentration, $70^{\circ}C$ reaction temperature and 198 min reaction time. The predicted lignin content was 2.2% at the optimum conditions. Experimental verification of the optimum conditions gave the lignin content in similar value with the estimated value of the model. Finally, glucose conversion of pretreated soybean hull using acid hydrolysis resulted in $97.1{\pm}0.4%$. This research of two-step pretreatment was a promising method for increasing the glucose conversion in the cellulose-to-glucose process.

Effect of Different Pretreatment Methods on the Bioconversion of Rice Bran into Ethanol

  • Eyini, M.;Rajapandy, V.;Parani, K.;Lee, Min-Woong
    • Mycobiology
    • /
    • v.32 no.4
    • /
    • pp.170-172
    • /
    • 2004
  • The efficiency of acid, enzyme and microbial pretreatment of rice bran was compared based on the content of cellulose, hemicellulose, reducing sugars and xylose in the substrate. An isolate of Aspergillus niger or a strain of Trichoderma viride(MTCC 800) was employed for microbial pretreatment of rice bran in solid state. Acid pretreatment resulted in the highest amount of reducing sugars followed by enzyme and microbial pretreatment. A. niger showed a higher rate of hydrolysis than T. viride. The rice bran hydrolysate obtained from the different methods was subsequently fermented to ethanol either by Zymomonas mobilis(NCIM 806) or by Pichia stipitis(NCIM 3497). P. stipitis fermentation resulted in higher ethanol(37% higher) and biomass production($76{\sim}83%$ higher) than those of Z. mobilis. Maximum ethanol production resulted at 12h in Zymomonas fermentation, while in Pichia fermentation, it was observed at 60h. Microbial pretreatment of rice bran by A. niger followed by fermentation employing P. stipitis was more efficient but slower than the other microbial pretreatment and fermentation.

Effect of Ethanol Pretreatment on the Toluene Metabolism in Toluene-treated Rats (흰쥐에 있어서 주정중독이 Toluene 대사에 미치는 영향)

  • 윤종국;윤선동;신중규
    • Toxicological Research
    • /
    • v.12 no.2
    • /
    • pp.243-250
    • /
    • 1996
  • To evaluate an effect of ethanol pretreatment on the toluene metabolism, toluene (50% in olive oil) was given three times at 0.2 ml/100g body weight at the interval of one day to the rats fed with 5% ethanol during two months. The ethanol pretreated rats were not identified particular liver injury by the histopathologic findings. In case of toluene treatment, the ethanol pretreatment to the rats led to more increased concentration of urinary hippuric acid than those treated with only toluene. The ethanol pretreatment to the rats led to the increased activities of hepatic aniline hydroxylase and these enzyme activities were higher both in toluene treated and those pretreated with ethanol, but no differences were found in two groups. Ethanol pretreated rats showed the more increased activities of benzylalcohol dehydrogenase than control group. Moreover, the ethanol pretreatment to the toluene treated rats led to significantly more increased activities of benzylalcohol dehydrogenase compared with those treated with toluene only. Furthermore, the alcohol pretreatment to the toluene treated rats also led to somewhat higher activities of benzaldehyde dehydrogenase than those treated with toluene. In conclusion, these results indicate that the chronic pretreatment of ethanol at not so much liver damage as normal may rather activate the toluene metabolism.

  • PDF