Browse > Article
http://dx.doi.org/10.5658/WOOD.2022.50.6.475

Conversion of Glucose and Xylose to 5-Hydroxymethyl furfural, Furfural, and Levulinic Acid Using Ethanol Organosolv Pretreatment under Various Conditions  

Ki-Seob, GWAK (Advanced Materials R&D Team, R&D Institute, Moorim P&P Co., Ltd.)
Chae-Hwi, YOON (Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University)
Jong-Chan, KIM (Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University)
Jong-Hwa, KIM (Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University)
Young-Min, CHO (Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University)
In-Gyu, CHOI (Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.50, no.6, 2022 , pp. 475-489 More about this Journal
Abstract
The objective of this study was to understand the conversion characteristics of glucose and xylose using the major monosaccharide standards for lignocellulosic biomass. The acid-catalyzed organosolv pretreatment conducted using ethanol was significantly different from the acid-catalyzed process conducted in an aqueous medium. 5-hydroxymethylfurfural (5-HMF), levulinic acid and furfural were produced from glucose conversion. The maximum yield of 5-HMF was 5.5%, at 200℃, when 0.5% sulfuric acid was used. The maximum yield of levulinic acid was 21.5%, at 220℃, when 1.0% sulfuric acid was used. Furfural was produced from xylose conversion and under 0.5% sulfuric acid, furfural reached the maximum yield 48.5% at 210℃. Ethyl levulinate and methyl levulinate were also formed from the glucose standard following the esterification reaction conducted under conditions of the combined conversion method, which proceeded under both ethanol-rich and water-rich conditions.
Keywords
acid-catalyzed organosolv pretreatment; glucose; xylose; 5-hydroxymethyl furfural; furfural; levulinic acid;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Agirrezabal-Telleria, I., Larreategui, A., Requies, J., Guemez, M.B., Arias, P.L. 2011. Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen. Bioresource Technology 102(16): 7478-7485.   DOI
2 Antal, M.J. Jr., Leesomboon, T., Mok, W.S., Richards, G.N. 1991. Mechanism of formation of 2-furaldehyde from D-xylose. Carbohydrate Research 217: 71-85.   DOI
3 Antal, M.J. Jr., Mok, W.S.L., Richards, G.N. 1990. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose an sucrose. Carbohydrate Research 199(1): 91-109.   DOI
4 Asghari, F.S., Yoshida, H. 2006. Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Industrial & Engineering Chemistry Research 45(7): 2163-2173.   DOI
5 Bozell, J.J., Moens, L., Elliott, D.C., Wang, Y., Neuenscwander, G.G., Fitzpatrick, S.W., Bilski, R.J., Jarnefeld, J.L. 2000. Production of levulinic acid and use as a platform chemical for derived products. Resources, Conservation and Recycling 28(3-4): 227-239.   DOI
6 Chandra, R.P., Bura, R., Mabee, W.E., Berlin, A., Pan, X., Saddler, J.N. 2007. Substrate Pretreatment: The Key to Effective Enzymatic Hydrolysis of Lignocellulosics? In: Biofuels, Ed. by Olsson, L. Springer, Berlin, Germany.
7 Choudhary, V., Sandler, S.I., Vlachos, D.G. 2012. Con- version of xylose to furfural using Lewis and Bronsted acid catalysts in aqueous media. ACS Catalysis 2(9): 2022-2028.
8 Chun, C., Xiaojian, M.A., Peilin, C.E.N. 2006. Kinetics of levulinic acid formation from glucose decomposition at high temperature. Chinese Journal of Chemical Engineering 14(5): 708-712.   DOI
9 Dias, A.S., Pillinger, M., Valente, A.A. 2005. Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. Journal of Catalysis 229(2): 414-423.   DOI
10 Fatriasari, W., Nurhamzah, F., Raniya, R., Laksana, R.P.B., Anita, S.H., Iswanto, A.H., Hermiati, E. 2020. Enzymatic hydrolysis performance of biomass by the addition of a lignin based biosurfactant. Journal of the Korean Wood Science and Technology 48(5): 651-665.   DOI
11 Fusaro, M.B., Chagnault, V., Postel, D. 2015. Reactivity of D-fructose and D-xylose in acidic media in homogeneous phases. Carbohydrate Research 409: 9-19.   DOI
12 Girio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Lukasik, R. 2010. Hemicelluloses for fuel ethanol: A review. Bioresource Technology 101(13): 4775-4800.   DOI
13 Girisuta, B., Janssen, L.P.B.M., Heeres, H.J. 2006. Green chemicals: A kinetic study on the conversion of glucose to levulinic acid. Chemical Engineering Re- search and Design 84(5): 339-349.   DOI
14 Harris, D.W., Feather, M.S. 1975. Mechanism of the interconversion of D-glucose, D-mannose, and D-fructose in acid solution. Journal of the American Chemical Society 97(1): 178-181.   DOI
15 Girisuta, B., Janssen, L.P.B.M., Heeres, H.J. 2007. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Industrial & Engineering Chemistry Research 46(6): 1696-1708.   DOI
16 Han, S.Y., Park, C.W., Kwon, G.J., Kim, J.H., Kim, N.H., Lee, S.H. 2020. Effect of [EMIM] Ac recycling on Salix gracilistyla Miq. pretreatment for enzymatic saccharification. Journal of the Korean Wood Science and Technology 48(3): 405-413.   DOI
17 Harris, D.W., Feather, M.S. 1973. Evidence for a C-2→C-1 intramolecular hydrogen-transfer during the acid-catalyzed isomerization of D-glucose to D-fructose ag. Carbohydrate Research 30(2): 359-365.   DOI
18 Helm, R.F., Young, R.A., Conner, A.H. 1989. The reversion reactions of D-glucose during the hydrolysis of cellulose with dilute sulfuric acid. Carbohydrate Research 185(2): 249-260.
19 Hendriks, A.T.W.M., Zeeman, G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100(1): 10-18.   DOI
20 Holtzapple, M.T., Humphrey, A.E. 1984. The effect of organosolv pretreatment on the enzymatic hydrolysis of poplar. Biotechnology and Bioengineering 26(7): 670-676.   DOI
21 Hwang, U.T., Bae, J., Lee, T., Hwang, S.Y., Kim, J.C., Park, J., Choi, I.G., Kwak, H.W., Hwang, S.W., Yeo, H. 2021. Analysis of carbonization behavior of hydrochar produced by hydrothermal carbonization of lignin and development of a prediction model for carbonization degree using near-infrared spectroscopy. Journal of the Korean Wood Science and Technology 49(3): 213-225.   DOI
22 Jung, J.Y., Ha, S.Y., Yang, J.K. 2022. Effect of steam explosion condition on the improvement of physicochemical properties of pine chips for feed additives. Journal of the Korean Wood Science and Technology 50(1): 59-67.   DOI
23 Iswanto, A.H., Tarigan, F.O., Susilowati, A., Darwis, A., Fatriasari, W. 2021. Wood chemical compositions of raru species originating from Central Tapanuli, North Sumatra, Indonesia: Effect of differences in wood species and log positions. Journal of the Korean Wood Science and Technology 49(5): 416-429.
24 Jang, S.K., Jeong, H.S., Hong, C.Y., Kim, H.Y., Ryu, G.H., Yeo, H., Choi, J.W., Choi, I.G. 2015. Changes of furfural and levulinic acid yield from small-diameter Quercus mongolica depending on dilute acid pretreatment conditions. Journal of the Korean Wood Science and Technology 43(6): 838-850.
25 Jing, Q., Lu, X. 2007. Kinetics of non-catalyzed decomposition of D-xylose in high temperature liquid water. Chinese Journal of Chemical Engineering 15(5): 666-669.   DOI
26 Kabyemela, B.M., Adschiri, T., Malaluan, R.M., Arai, K. 1997. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Industrial & Engineering Chemistry Research 36(5): 1552-1558.   DOI
27 Kang, S., Fu, J., Zhang, G. 2018. From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews 94: 340-362.   DOI
28 Kim, H.Y., Gwak, K.S., Jang, S.K., Ryu, K.O., Yeo, H., Choi, I.G. 2015b. Organosolv pretreatment of slurry composting and biofiltration of liquid fertilizer-treated yellow poplar for sugar production. Journal of the Korean Wood Science and Technology 43(5): 578-590.   DOI
29 Kim, H.Y., Hong, C.Y., Kim, S.H., Yeo, H., Choi, I.G. 2015a. Optimization of the organosolv pretreatment of yellow poplar for bioethanol production by response surface methodology. Journal of the Korean Wood Science and Technology 43(5): 600-612.
30 Kim, H.Y., Gwak, K.S., Kim, H.Y., Ryu, K.O., Kim, P.G., Cho, D.H., Choi, J.Y., Choi, I.G. 2011. Effect of treatment amounts of slurry composting and biofiltration liquid fertilizer on growth characteristics and bioethanol production of yellow poplar. Journal of the Korean Wood Science and Technology 39(6): 459-468.   DOI
31 Kuster, B.F.M. 1990. 5-Hydroxymethylfurfural (HMF). A review Focusing on its manufacture. Starch 42(8): 314-321.   DOI
32 Mamman, A.S., Lee, J.M., Kim, Y.C., Hwang, I.T., Park, N.J., Hwang, Y.K., Chang, J.S., Hwang, J.S. 2008. Furfural: Hemicellulose/xylose derived biochemical. Biofuels Bioproducts & Biorefining 2(5): 438-454.   DOI
33 Maulana, M.I., Murda, R.A., Purusatama, B.D., Sari, R.K., Nawawi, D.S., Nikmatin, S., Hidayat, W., Lee, S.H., Febrianto, F., Kim, N.H. 2021. Effect of alkali-washing at different concentration on the chemical compositions of the steam treated bamboo strands. Journal of the Korean Wood Science and Technology 49(1): 14-22.   DOI
34 Min, B.C., Koo, B.W., Gwak, K.S., Yeo, H.M., Choi, J.W., Choi, I.G. 2011. Effects of dilute acid pretreatment on enzyme adsorption and surface morphology of Liriodendron tulipifera. Journal of the Korean Wood Science and Technology 39(2): 187-195.   DOI
35 Nimlos, M.R., Qian, X., Davis, M., Himmel, M.E., Johnson, D.K. 2006. Energetics of xylose decomposition as determined using quantum mechanics modeling. The Journal of Physical Chemistry A 110 (42): 11824-11838.   DOI
36 Rackemann, D.W., Bartley, J.P., Doherty, W.O.S. 2014. Methanesulfonic acid-catalyzed conversion of glucose and xylose mixtures to levulinic acid and furfural. Industrial Crops and Products 52: 46-57.   DOI
37 Oefner, P.J., Lanziner, A.H., Bonn, G., Bobleter, O. 1992. Quantitative studies on furfural and organic acid formation during hydrothermal, acidic and alkaline degradation of D-xylose. Monatshefte fur Chemie/Chemical Monthly 123(6): 547-556.   DOI
38 Park, Y., Jeon, W.S., Yoon, S.M., Lee, H.M., Hwang, W.J. 2020. Evaluation of cell-wall microstructure and anti-swelling effectiveness of heat-treated larch wood. Journal of the Korean Wood Science and Technology 48(6): 780-790.   DOI
39 Qian, X., Nimlos, M.R., Johnson, D.K., Himmel, M.E. 2005. Acidic sugar degradation pathways: An ab initio molecular dynamics study. Applied Biochemistry and Biotechnology 124: 989-997.   DOI
40 Rackemann, D.W., Doherty, W.O.S. 2011. The convertsion of lignocellulosics to levulinic acid. Biofuels Bioproducts and Biorefining 5(2): 198-214.   DOI
41 Ryu, G.H., Jeong, H.S., Jang, S.K., Hong, C.Y., Choi, J.W., Choi, I.G. 2016. Investigation of furfural yields of liquid hydrolyzate during dilute acid pretreatment process on Quercus mongolica using response surface methodology. Journal of the Korean Wood Science and Technology 44(1): 85-95.   DOI
42 Saha, B.C. 2003. Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology 30(5): 279-291.   DOI
43 Sasaki, M., Fang, Z., Fukushima, Y., Adschiri, T., Arai, K. 2000. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Industrial & Engineering Chemistry Research 39(8): 2883-2890.   DOI
44 Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. 2008a. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples. Laboratory Analytical Procedures [NREL], Golden, CO, USA.
45 Schulz, H.R., Acosta, A.P., Barbosa, K.T., Junior, M.A.P.S., Gallio, E., Delucis, R.A., Gatto, D.A. 2021. Chemical, mechanical, thermal, and colorimetric features of the thermally treated Eucalyptus grandis wood planted in Brazil. Journal of the Korean Wood Science and Technology 49(3): 226-233.   DOI
46 Shin, G.J., Jeong, S.Y., Lee, H.J., Lee, J.W. 2015. Furfural production and recovery by two-stage acid treatment of lignocellulosic biomass. Journal of the Korean Wood Science and Technology 43(1): 76-85.   DOI
47 Shin, S.J. 2013. Quantitative analysis of reaction pro- ducts from glucose and xylose in acidic aqueous medium by 1H-NMR spectroscopic method. Journal of the Korean Wood Science and Technology 41(4): 287-292.   DOI
48 Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. 2008b. Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedures [NREL], Golden, CO, USA.
49 Takeuchi, Y., Jin, F., Tohji, K., Enomoto, H. 2008. Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances. Journal of Materials Science 43(7): 2472-2475.
50 Weingarten, R., Cho, J., Conner, W.C. Jr., Huber, G.W. 2010. Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chemistry 12(8): 1423-1429.   DOI
51 Wildschut, J., Arentz, J., Rasrendra, C.B., Venderbosch, R.H., Heeres, H.J. 2009. Catalytic hydrotreatment of fast pyrolysis oil: Model studies on reaction pathways for the carbohydrate fraction. Environmental Progress & Sustainable Energy 28(3): 450-460.
52 Ya'aini, N., Amin, N.A.S., Endud, S. 2013. Characterization and performance of hybrid catalysts for levulinic acid production from glucose. Microporous and Mesoporous Materials 171: 14-23.   DOI
53 Yang, W., Li, P., Bo, D., Chang, H., Wang, X., Zhu, T. 2013. Optimization of furfural production from Dxylose with formic acid as catalyst in a reactive extraction system. Bioresource Technology 133: 361-369.   DOI
54 Yemis, O., Mazza, G. 2011. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresource Technology 102 (15): 7371-7378.   DOI
55 Yin, S., Pan, Y., Tan, Z. 2011. Hydrothermal conversion of cellulose to 5-hydroxymethyl furfural. International Journal of Green Energy 8(2): 234-247.   DOI
56 Zeitsch, K.J. 2000. The Chemistry and Technology of Furfural and Its Many By-products. Elsevier Science, Amsterdam, Netherland.
57 Zendrato, H.M., Devi, Y.S., Masruchin, N., Wistara, N.J. 2021. Soda pulping of torch ginger stem: Promising source of nonwood-based cellulose. Journal of the Korean Wood Science and Technology 49(4): 287-298.   DOI
58 Zhang, Z., Harrison, M.D., Rackemann, D.W., Doherty, W.O.S., O'Hara, I.M. 2016. Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chemistry 18(2): 360-381.   DOI