• Title/Summary/Keyword: Acid Leaching

Search Result 398, Processing Time 0.024 seconds

Ammoniacal Leaching for Recovery of Valuable Metals from Spent Lithium-ion Battery Materials (폐리튬이온전지로부터 유가금속을 회수하기 위한 암모니아 침출법)

  • Ku, Heesuk;Jung, Yeojin;Kang, Ga-hee;Kim, Songlee;Kim, Sookyung;Yang, Donghyo;Rhee, Kangin;Sohn, Jeongsoo;Kwon, Kyungjung
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.44-50
    • /
    • 2015
  • Recycling technologies would be required in consideration of increasing demand in lithium ion batteries (LIBs). In this study, the leaching behavior of Ni, Co and Mn is investigated with ammoniacal medium for spent cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles. The leaching behavior of each metal is analyzed in the presence of reducing agent and pH buffering agent. The existence of reducing agent is necessary to increase the leaching efficiency of Ni and Co. The leaching of Mn is insignificant even with the existence of reducing agent in contrast to Ni and Co. The most conspicuous difference between acid and ammoniacal leaching would be the selective leaching behavior between Ni/Co and Mn. The ammoniacal leaching can reduce the cost of basic reagent that makes the pH of leachate higher for the precipitation of leached metals in the acid leaching.

The Characteristic Dissolution of Valuable Metals from Mine-Waste Rock by Heap Bioleaching, and the Recovery of Metallic Copper Powder with Fe Removal and Electrowinning (더미 미생물용출에 의한 폐-광석으로부터 유용금속 용해 특성과 Fe 제거와 전기분해를 이용한 금속구리분말 회수)

  • Kim, Bong-JuK;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.207-222
    • /
    • 2014
  • In order to recover the metallic copper powder from the mine-waste rock, heap bioleaching, Fe removal and electrowinning experiments were carried out. The results of heap leaching with the mine-waste rock sample containing 0.034% Cu showed that, the leaching rate of Cu were 61% and 62% in the bacteria leaching and sulfuric acid leaching solution, respectively. Sodium hydroxide (NaOH), hydrogen peroxide ($H_2O_2$) and calcium hydroxide ($Ca(OH)_2$) were applied to effectively remov Fe from the heap leaching solution, and then $H_2O_2$ was selected for the most effective removing Fe agent. In order to prepare the electrolytic solution, $H_2O_2$ were again treated in the heap leaching, and Fe removal rates were 99% and 60%, whereas Cu removal rates were 5% and 7% in the bacteria and sulfuric acid leaching solutions, respectively. After electrowinning was examined in these leaching solution, the recovery rates of Cu were obtained 98% in bacteria and obtained 76% in the sulfuric leaching solution. The dendritic form of metallic copper powder was recovered in both leaching solutions.

Vanadium Leaching Behavior from Domestic Vanadium Bearing Titanomagnetite Ore through CaO Roasting (국내산 함바나듐 티탄자철광으로부터 CaO 배소를 통한 바나듐 침출거동)

  • Shin, Dong Ju;Joo, Sung-Ho;Lee, Dongseok;Jeon, Ho-Seok;Shin, Shun Myung
    • Resources Recycling
    • /
    • v.30 no.4
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, the leaching behavior of vanadium (V) was investigated through CaO roasting and sulfuric acid leaching from domestic V-bearing titanomagnetite (VTM). Changes in the phase according to the amount of CaO added and roasting temperature were analyzed. Regardless of the roasting conditions, perovskite (CaTiO3) was preferred to form. When the CaO content was increased, the calcium ferrite (CaFeOx) phase was formed; otherwise, ferrite (Fe2O3) was preferred. After CaO was roasted, leaching was performed for 6 h with 1M sulfuric acid at 50℃ and a 10% solid-liquid ratio. Results of leaching revealed that when the roasted product was sintered, V was not sufficiently oxidized, and the leaching efficiency decreased. In addition, when the roasting temperature was low, the leaching efficiency of V decreased due to the influence of unreacted excess CaO. To lower the leaching efficiency of iron and titanium in VTM concentrates, suppressing the formation of CaTiO3 and CaFeOx was necessary by minimizing the amount of CaO added. Consequently, a leaching efficiency of 86% V, 4.3% Fe, and 6.5% Ti was obtained when the roasted product of 1150℃ and 10 wt% CaO was leached.

Leaching of the Mixture of Metallic Gold and Silver (금과 은 금속혼합물의 침출)

  • Xing, Weidong;Lee, Manseung
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.39-45
    • /
    • 2017
  • In order to exclude the effect of uneven distribution of gold in anode slime, the dissolution of gold and silver from the metal mixture was investigated in different systems, such as the mixture of hydrochloric acid and oxidizing reagents ($H_2O_2$, NaClO and $HNO_3$), thiosulfate and thiourea. In the mixture of HCl and either $HNO_3$ or $H_2O_2$, Au was completely dissolved but the leaching percentage of Ag was around 1%. In both thiosulfate and thiourea solution, gold was not dissolved at all. The presence of ferric ion in acidic thiourea solution showed a favorable effect on the leaching of silver but further study is necessary to elucidate the combined effect of ferric ion and sulfuric acid.

A Study on the Separation of Membrane and Leaching of Platinum and Ruthenium by Hydrochloric Acid from MEA of Fuel Cell (연료전지용(燃料電池用) 막전극접합체(膜電極接合體)의 막분리(膜分離) 및 염산(鹽酸)에 의한 백금(白金)과 루테늄의 침출(浸出)에 관(關)한 연구(硏究))

  • Lee, Jin-A;Kang, Hong-Yoon;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.15-20
    • /
    • 2012
  • In this paper, we carried out separation of membrane and leaching of Pt and Ru using hydrochloric acid from MEA(membrane-electrode assembly) of fuel cell. In this method, these were separated from MEA of fuel cell using the distilled water, 10 vol.% butanol solution and 15 vol.% cationic surfactant(Koremul-LN-7) by dipping method without the dispersion of catalyst particles. And the leaching of Pt and Ru containing in the separated carbon paper catalysts has been studied by hydrochloric acid using $HNO_3$ or $H_2O_2$ as a oxidant. The leaching ratio of Pt and Ru were higher when $H_2O_2$ was used as a oxidant and the optimum conditions were obtained in 8M HCl, the amount of $H_2O_2$ 5M and 6 hours of leaching time at $90^{\circ}C$. In this condition, extraction of Pt and Ru were 98% and 71.5%, respectively.

Bioleaching of valuable metals from electronic scrap using fungi(Aspergillus niger) as a microorganism (곰팡이균(Aspergillus niger)을 이용(利用)한 전자스크랩중 유가금속(有價金屬)의 미생물(微生物) 침출(浸出) 연구(硏究))

  • Ahn, Jae-Woo;Jeong, Jin-Ki;Lee, Jae-Chun;Kim, Dong-Gin
    • Resources Recycling
    • /
    • v.14 no.5 s.67
    • /
    • pp.24-31
    • /
    • 2005
  • In order to recover valuable metals from fine-grained electronic waste, bioleaching of Cu, Zn, Al, Co, Ni, Fe, Sn and Pb were carried out using Aspergillus niger as a leaching microorganism in a shaking flask. Aspergillus niger was able to grow in the presence of electronic scrap. The formation of organic acids(citric and oxalic acid) from Aspergillus niger caused the mobilization of metals from waste electronic scrap. In a preliminary study, in order to obtain the data on the leaching of Cu, Zn, Al, Fe, Co and Ni from electronic scrap, chemical leaching using organic acid(Citric acid and Oxalic acid) was accomplished. At the electronic scrap concentration of 50 g/L, Aspergillus niger were able to leach more than 95% of the available Cu, Co. But Al, Zn, Pb and Sn were leached about 15-35%. Ni and Fe were detected in the leachate less than 10%.

The Effect of pH on Citric Acid Leaching of Soil Contaminated with Heavy Metals (중금속(重金屬) 오염토양(汚染土壤)의 구산(枸酸) 침출(浸出)에 대한 pH의 영향(影響))

  • Jung, Kyungbae;Park, Hongki;Yoo, Kyoungkeun;Park, Jay Hyun;Choi, Ui Kyu
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.13-19
    • /
    • 2013
  • The effect of pH on the citrate leaching behavior of heavy metal ion was investigated to develop an eco-friendly process for removing heavy metals from soil contaminated with copper, zinc, and lead. The leaching tests were performed using citrate solution with pH adjusted by mixing citric acid and sodium citrate under the following leaching conditions: particle size, under $75{\mu}m$; temperature, $50^{\circ}C$; citrate concentration, $1kmol/m^3$; pulp density, 5%; shaking speed, 100 rpm; leaching time, 1 hour. The difference of pH before and after the leaching test was not observed, and this result indicates the direct effect of hydrogen ion concentration on the leaching of metals was insignificant. The removal ratios of copper, zinc, and lead from the contaminated soil decreased with increasing pH. The thermodynamic calculation suggests that the leaching behaviors of metal ions were determined by two reactions; one is the reaction to form complex ions between heavy metal ions and citrate ion species, and the other is the reaction to form metal hydroxide between heavy metal ions and hydroxide ion.

Leaching of Valuable Metals from NCM Cathode Active Materials in Spent Lithium-Ion Battery by Malic acid (폐리튬이온전지 NCM 양극활물질로부터 말릭산을 이용한 유가금속의 침출)

  • Son, Seong Ho;Kim, Jin Hwa;Kim, Hyun-Jong;Kim, Sun Jung;Lee, Man Seung
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.21-29
    • /
    • 2014
  • Nickel, cobalt and manganese-based(NCM, $Li(Ni_xCo_yMn_z)O_2$) cathode active materials of spent lithium-ion batteries contained valuable metals such as cobalt(15 ~ 20%), nickel(25 ~ 30%), manganese(10 ~ 15%) and lithium(5 ~ 10%). It was investigated the eco-friendly leaching process for the recovery of valuable metal from spent lithium-ion battery NCM cathode active materials by DL-malic acid($C_4H_5O_6$) as an organic leachant in this research. The experiments were carried out to optimize the process parameters for the recovery of cobalt, nickel and lithium by varying the concentration of lixivant, reductant concentration, solid/liquid ratio and temperature. The leaching solution was analyzed using ICP-OES(Inductively Coupled Plasma Optic Emission Spectrometer). Cathode active materials of 5 wt. % were introduced into the leaching solution which was 2 M DL-malic acid in addition of 5 vol. % $H_2O_2$ at $80^{\circ}C$ and it resulted in the recovery of 99.10% cobalt, 99.80% nickel and 99.75% lithium in 120 min. $H_2O_2$ in DL-malic acid solution acts as an effective reducing agents, which enhance the leaching of metals.

The Characteristics of Solidification and Leachability of Lead Sludge (납슬러지 고형화 및 용출 특성)

  • 연익준;주소영;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.22-30
    • /
    • 1999
  • This study was carried out to examine the compressive strength characteristics of solids solidified with the lead sludge with mixture of cement and fly ashes as additive. And the additives are commercial fly ash and ESP(Electrostatic precipitator) fly ash. The compressive strength of solidified lead sludge solid was increased by adding fly ash up to 46~62%, which was the results of pozzolanic reaction. When replaced the cement with 10%of commercial fly ash, the solid showed the highest value $210{\;}kg/cm^2$, and the solidification conditions were 0.55 of the water/cement ratio and curing for 14 days. Also, the results of leaching test by EPT(Environmental Protection Agency-Toxicity Test) were showed that the solidified lead has leached out under 10%, which was less than 0.173 mg/L of EPA standard. As leaching solutions, the demineralized water, 0.1N acetic acid solution, and synthetic brine were used. and the observations by SEM of the solidified lead-laden solid after EPT leaching test were indicated the severe erosion on solid surface.

  • PDF

Speciation and Leaching Potential of Heavy Metals in Sediments of Nakdong River (낙동강 퇴적물 내 중금속 존재 형태 및 용출 가능성)

  • Hwang, Kyung-Yup;Park, Seong-Yeol;Baek, Won Suk;Jung, Je-Ho;Kim, Young-Hun;Shin, Won Sik;Lee, Nam Joo;Hwang, Inseong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.113-122
    • /
    • 2007
  • Experimental studies were performed to investigate speciation and leaching potential of heavy metals(Cu, Cd, Pb Zn, Ni) in ten sediment samples collected from Nakdong River. Acid Volatile Sulfide (AVS) and Simultaneously Extractable Metals (SEM) measurements were used to estimate heavy metals that can be leached under anaerobic conditions. Sequential Extraction Procedure (SEP) and Toxicity Characteristic Leaching Procedure (TCLP) were used to characterize speciation and leaching potential of heavy metals under aerobic conditions. The results show that total concentrations of Cu, Zn and Ni were relatively high in the sediments from points Seongseo industrial complex stream (upper stream) (D), Seongseo industrial complex stream (midstream) (E), Dalseo stream (F), and Nakdong river estuary (J), and that Cd concentrations were higher in all sampling points except for Goriung Bridge (G) and Soosan Bridge (H). SEM and AVS analyses reveal that samples from points Ilsun Bridge (A), Namgumi Bridge (C), and Soosan Bridge (H) have potential of heavy metals leaching, although leachable concentrations are relatively low. The leaching potential of heavy metals in other points was low because of higher concentrations of AVS than SEM. SEP results show that more than 50% of Cu, Zn and Ni were present in residual fraction, which means these metals are less amenable to leaching in anaerobic conditions. On the other hand, more than 50% of Pb and Cd were extracted during the first through third step of the SEP, which means substantial fraction of these metals can be leached upon changing of redox conditions. TCLP tests predict that leaching potential of heavy metals was generally low, which is consistent with the results obtained by AVS and SEM measurements.