DOI QR코드

DOI QR Code

Vanadium Leaching Behavior from Domestic Vanadium Bearing Titanomagnetite Ore through CaO Roasting

국내산 함바나듐 티탄자철광으로부터 CaO 배소를 통한 바나듐 침출거동

  • Shin, Dong Ju (Resources Recovery Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Joo, Sung-Ho (Resources Recovery Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Lee, Dongseok (Resources Recovery Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Jeon, Ho-Seok (Resources Recovery Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Shin, Shun Myung (Resources Recovery Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 신동주 (한국지질자원연구원 광물자원연구본부 자원회수연구센터) ;
  • 주성호 (한국지질자원연구원 광물자원연구본부 자원회수연구센터) ;
  • 이동석 (한국지질자원연구원 광물자원연구본부 자원회수연구센터) ;
  • 전호석 (한국지질자원연구원 광물자원연구본부 자원회수연구센터) ;
  • 신선명 (한국지질자원연구원 광물자원연구본부 자원회수연구센터)
  • Received : 2021.04.01
  • Accepted : 2021.06.01
  • Published : 2021.08.31

Abstract

In this study, the leaching behavior of vanadium (V) was investigated through CaO roasting and sulfuric acid leaching from domestic V-bearing titanomagnetite (VTM). Changes in the phase according to the amount of CaO added and roasting temperature were analyzed. Regardless of the roasting conditions, perovskite (CaTiO3) was preferred to form. When the CaO content was increased, the calcium ferrite (CaFeOx) phase was formed; otherwise, ferrite (Fe2O3) was preferred. After CaO was roasted, leaching was performed for 6 h with 1M sulfuric acid at 50℃ and a 10% solid-liquid ratio. Results of leaching revealed that when the roasted product was sintered, V was not sufficiently oxidized, and the leaching efficiency decreased. In addition, when the roasting temperature was low, the leaching efficiency of V decreased due to the influence of unreacted excess CaO. To lower the leaching efficiency of iron and titanium in VTM concentrates, suppressing the formation of CaTiO3 and CaFeOx was necessary by minimizing the amount of CaO added. Consequently, a leaching efficiency of 86% V, 4.3% Fe, and 6.5% Ti was obtained when the roasted product of 1150℃ and 10 wt% CaO was leached.

본 연구에서는 국내산 함바나듐 티탄자철광으로부터 CaO 염배소 및 황산 침출을 통해 바나듐의 침출거동에 대해 고찰하였다. CaO의 첨가량 및 배소 온도에 따라 상의 변화를 살펴보았다. 배소 조건에 관계없이 Perovskite (CaTiO3)가 형성되었으며, CaO 함량이 높아지면 Calcium ferrite (CaFeOx) 상이 CaO 함량이 낮아지면 Hematite (Fe2O3)가 형성이 되었다. CaO 배소 후 1M 황산, 50℃, 고액비 10%에서 6시간 동안 침출을 진행하였다. 침출 결과 배소 시료의 형태가 소결일 경우 바나듐의 산화가 충분히 이루어지지 못해 침출률이 감소하였다. 또한 배소 온도가 낮으면 미 반응한 잔류 CaO의 영향으로 바나듐의 침출률이 감소하였다. 함바나듐 티탄자철광의 철과 티타늄의 침출률을 낮추기 위해서는 CaO의 첨가량을 최소화하여 CaTiO3와 CaFeOx의 형성을 억제할 필요가 있었다. 결과적으로 1150℃, 10 wt.% CaO 배소 산물을 침출하였을 때 86%의 바나듐, 4.3%의 철, 6.5%의 티타늄의 침출률을 얻을 수 있었다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 주요사업인 '국내 부존바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013, 21-3212-1)' 과제의 일환으로 수행되었습니다.

References

  1. Yoon, H-S., Chae, S., Kim, C-J., et al., 2020 : Precipitation behavior of ammonium vanadate from solution containing vanadium, Resources Recycling, 28(5), pp.42-50.
  2. Gilligan, R., Nikoloski, A.N., 2020 : The extraction of vanadium from titanomagnetites and other sources, Minerals Enginnering, 146, pp.106106. https://doi.org/10.1016/j.mineng.2019.106106
  3. Allen, M.A., Butler, G.M., 1921 : Vanadium, University of Arizona, Arizona Bureau of Mines: Tucson, AZ, USA, Volume 115.
  4. U.S. Geological Survey, 2020 : 2017 Minerals Yearbook Vanadium, U.S. Department of the Interior, USA.
  5. Taylor, P.R., Shuey, S.A., Vidal, E.E., et al., 2006 : Extractive metallurgy of vanadium-containing titaniferous magnetite ores: a review, Minerals & Metallurgical Processing, 23(2), pp.80-86.
  6. Moskalyk, R.R., Alfantazi, A.M., 2003 : Processing of vanadium: a review, Minerals Engineering, 16, pp.793-805. https://doi.org/10.1016/S0892-6875(03)00213-9
  7. Largo Resources Ltd., 2017 : An Updated Mine Plan, Mineral Reseve and Preliminary Economic Assessment of the Inferred Resources, Maracas Menchen Project, Bahia, Brazil.
  8. Bushveld Minerals Limited (BMN) and Bushveld Vametco Alloys (Pty) Ltd., 2020 : Competent Persons' Report on the Vametco Vanadium Mine, North West Province, South Africa, The MAS Group, Parkhurst, South Africa.
  9. Li, X., Xie, B., Wang, G., et al., 2011 : Oxidation process of low-grade vanadium slag in presence of Na2CO3, Transactions of Nonferrous Metals Society of China, 21(8), pp.1860-1867. https://doi.org/10.1016/S1003-6326(11)60942-4
  10. Zhu, X., Li, Wang., Guan, X., 2016 : Vanadium extraction from titano-magnetite by hydrofluoric acid, International Journal of Mineral Processing, 157, pp.55-59. https://doi.org/10.1016/j.minpro.2016.09.012
  11. Zhang, Y-M., Bao, S-X., Liu, T., et al., 2011 : The technology of extracting vanadium from stone coal in China: History, current status and future prospects, Hydrometallurgy, 109, pp.116-124. https://doi.org/10.1016/j.hydromet.2011.06.002
  12. Li, C., Zhou, X., Wang, H., et al., 2011 : Effect of oxidation on vanadium extraction from stone coal with calcified roasting, Journal of Central South University (Science and Technology), 42(1), pp.7-10.
  13. Ma, S., Zhang, G., 2007 : Leaching process of vanadium from argillaceous vanadium ore using calcified roasting I study on roasting technology, Chinese Journal of Rare Metals, 31(6), pp.813-817. https://doi.org/10.3969/j.issn.0258-7076.2007.06.019
  14. Zou, X., Peng, Q., Ouyang, Y. et al., 2001 : Research on the roasting process with calcium compounds for silica based vanadium ore, The Chinese Journal of Process Engineering, 1(2), pp.189-192. https://doi.org/10.3321/j.issn:1009-606X.2001.02.017
  15. Bie, S., Wang, Z., Li, Q., et al., 2010 : Review of vanadium extraction from stone coal by roasting technique with sodiu m chloride and calciu m oxide, Chinese Jou rnal of Rare Metals, 34(2), pp.291-297.
  16. Korneliussen, A., McENROE, S.A., Nilsson, L.P., et al., 2000 : An overview of titanium deposits in Norway, Norges geologiske undersokelse Bulletin, 436, pp.27-38.
  17. Schuiling, R.D., Feenstra, A., 1980 : Geochemical behavior of vanadium in iron-titanium oxides, Chemical Geology, 30, pp.143-150. https://doi.org/10.1016/0009-2541(80)90121-7
  18. Sui, Y., Guo, Y., Jiang, T., et al., 2017 : Reduction kinetics of oxidized vanadium titano-magnetite pellets using carbon monoxide and hydrogen, Journal of Alloys and Compounds, 706, pp.546-553. https://doi.org/10.1016/j.jallcom.2017.02.264
  19. Sui, Y., Guo, Y., Jiang, T., et al., 2019 : Separation and recovery of iron and titanium from oxidized vanadium titano-magnetite by gas-based reduction roasting and magnetic separation, Journal of Materials Research and Technology, 8(3), pp.3036-3043. https://doi.org/10.1016/j.jmrt.2018.05.031
  20. Phillips, B., Muan, A., 1958 : Phase equilibria in the system CaO-iron oxide in air and at 1 atm, O2 pressure, Journal of the American Ceramic Society, 41(11), pp.445-454. https://doi.org/10.1111/j.1151-2916.1958.tb12893.x
  21. Kimura, S., Muan, A., 1971 : Phase relations in the system CaO-iron oxide-titanium oxide under strongly reducing conditions, American Mineralogist: Journal of Earth and Planetary Materials, 56(7-8), pp.1347-1358.
  22. Roine, A., 2017 : Sustainable Process Technology and Engineering-A Manual on HSC Program, Continuous Research & Development, Filand.