• 제목/요약/키워드: Accuracy error

검색결과 4,999건 처리시간 0.031초

전달함수를 이용한 직선베어링 안내면의 운동정밀도 향상 (Improvement of Motion Accuracy Using Transfer Function in Linear Motion Bearing Guide)

  • 김경호;박천홍;이후상;김승우
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.77-85
    • /
    • 2002
  • An analysis method which calculates corrective machining information for improving the motion accuracy of linear motion guide Is proposed in this paper. The method is composed of two algorithms. One is the algorithm fur prediction of the motion errors from rail form error. The other is the algorithm for prediction of rail form error from the motion errors of table. Transfer function is utilized in each algorithm, which represents the ratio of bearing reaction force variation to unit magnitude of spatial frequencies of raid from error. As the corrective machining information is acquired from the measured motion errors of table, the method has a merit not to measure rail form error directly. Validity of the method is verified both theoretically and experimentally. By applying the method, linear motion error of test equipment is reduced from 5.97$\mu$m to 0.58$\mu$m, and reduced from 32.78arcsec to 6.21 arcsec in case of angular motion error. From the results, it is confirmed that the method is very effective to improve the motion accuracy of linear motion guide.

레이져 광학장치를 이용한 온라인 5 자유도 오차측정에 관한연구 (A Study on On-line 5 Degrees of Freedom Error Measurement using Laser Optical System)

  • 김진상;정성종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.375-378
    • /
    • 1995
  • Although laser interferometer measurement system has the advantage of range and accuracy, the traditional error measurement methods for geometric errors(two straightness and three angular errors) of a machine tool measures error components one at a time. It may also create an optical path difference and affect the measurement accuracy. In order to identify and compensate for geometric error of a moving body, an on-line measurement system for simultaneous detection of the five error components of a moving axis is required. An on-line measurement system with 5 degrees of freedom was developed for geometric error detection. Performance verification of the system was performed on an error generating mechanism. Experimental results show the feasibility of this system for identifying geometric errors of a side of machine tool.

  • PDF

골프스윙오류의 운동역학적 분류 (Kinetic Classification of Golf Swing Error)

  • 전철우;황인승;임정
    • 한국운동역학회지
    • /
    • 제16권4호
    • /
    • pp.95-103
    • /
    • 2006
  • The purpose of this study was to review the relevant literature about coaching and thereupon, survey the coaching methods used for golf lesson to reinterpret them and thereby, describe in view of kinetics the swing errors committed frequently by amateur golfers and suggest more scientific golf coaching methods. For this purpose, kinetic elements were divided into accuracy and power ones and therewith, the variables affecting such elements were identified. For this study, a total of 60 amateur golfer were sampled, and their swing forms were photographed with two high-speed digital cameras, and the resultant images were analyzed to determine the errors of each form kinetically, which would be analyzed again with the program V1-5000. The kinetic elements could be identified as accuracy, power and accuracy & power. Thus, setup and trajectory were classified into accuracy elements, while differences of inter-joint angles, cocking and delayed hitting. Lastly, timing and axial movement were classified into accuracy & power elements. Three errors were identified in association with setup. The errors related with trajectory elements accounted for most (6) of the 20 errors. Three errors were determined for inter-joint angle differences, and one error was associated with cocking and delayed hitting. Lastly, one error was classified into timing error, while five errors were associated with axial movement. Finally, as a result of arranging the errors into a cross table, it was found that the errors were associated with each other between take-back and back-swing, take-back and follow-through, back-swing and back-swing top, and between back-swing and down-swing. Namely, an error would lead to other error repeatedly. So, it is more effective to identify all the errors for every form and correct them comprehensively rather than single out the errors and correct them one by one.

인상채득방법이 임플란트 주모형의 정확성에 미치는 영향 (EFFECT OF IMPRESSION TECHNIQUE ON THE ACCURACY OF MASTER CAST FOR IMPLANT PROSTHESIS)

  • 김영오;양홍서
    • 대한치과보철학회지
    • /
    • 제42권2호
    • /
    • pp.238-247
    • /
    • 2004
  • Statement of problem: Major objective in making on implant-supported prosthesis is the production of superstructure that exhibits a passive fit when connected to multiple abutments. One requirement to ensure passive fit is to make an accurate impression. Purpose : The purpose of this study was to compare the accuracy of master cast fabricated by using different impression methods at the different impression levels. Material and method: The master model used in this study was resin block having low implant analogs. Impression method studied were 1) direct method on fxiture level (Group FIX-D), 2) indirect method on fixture level(Group FIX-I), 3) modified indirect method on fixture level(Group FIX-M), 4) direct method on abutment level(Group AB-D) and 5) indirect method on abutment level(Group AB-I). Each of the five groups took 10 impressions. Fifty impressions were made for master cast by using Impregum $F^{(R)}$ impression material loaded on individual tray. Three dimensional measuring microscope was used to measure the inter-implant distance. Error rate of each inter-implant distance were calculated and evaluated. Results : The results were as follows. 1. Group FIX exhibited higher accuracy than group AB. 2. In group FIX, modified indirect method showed the highest accuracy, while indirect method showed the lowest accuracy. In group Ab, indirect method showed the higher accuracy than direct method. 3. Group FIX showed larger horizontal error than group AB. But, group AB showed the larger vertical error than group FIX. 4. Group Fix-M showed smallest vertical and horizontal error. Conclusion: An impression method have more effect on accuracy of master model than an impression level. A modified indirect method showed smallest vertical and horizontal error.

Design and Performance Evaluation of Self-Localization with Landmarks

  • Masaki, Sano;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.155.1-155
    • /
    • 2001
  • The main contribution of this research is that it gives:(1) a rational criterion to select the best self-localizing method for a particular situation, and (2) an appropriate arrangement of the landmarks to minimize the error. In this paper, the authors propose a set of indices to evaluate the accuracy of the self-localizing methods, and the indices are derived from a sensitivity which is defined as the ratio of the localizing error to sensor error. And then, we compare the accuracy of self-localizing a mobile robot with landmarks based on the indices, and propose a rational way to minimize the localizing error.

  • PDF

작물모형 평가를 위한 통계적 방법들에 대한 비교 (Comparison of Statistic Methods for Evaluating Crop Model Performance)

  • 김준환;이충근;손지영;최경진;윤영환
    • 한국농림기상학회지
    • /
    • 제14권4호
    • /
    • pp.269-276
    • /
    • 2012
  • 작물모형 평가에 사용되거나 사용할 수 있는 9가지 지표를 소개하였으며 이들의 특징은 다음과 같다. efficiency of model (EF)와 index of agreement (d)은 dimension이 없고 관측수(n)에 의존적이지 않았으며, dimension에 대해서만 자유로운 것은 relative root mean square error (RRMSE), bias factor (Bf)와 accuracy factor (Af)이다. Root mean sqruar, mean error, mean absolute error들은 관측수와 dimension에 영향을 받기 때문에 판단 시 주의가 필요하다. 따라서 이들의 특징을 파악하여 목적에 맞게 모형의 성능을 파악하여야 한다.

리니어 모터의 위치 정밀도 향상에 관한 연구 (A Study on Enhancement of the Position Accuracy of a Linear Motor)

  • 민경석;오준모;최우천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1828-1831
    • /
    • 2003
  • There are various sources causing a position error in a linear motor. This paper focuses on error sources from rotational motions of a table and friction. Rotational errors occur due to imperfections during manufacturing and/or assembly of guide ways, and cause a position error at locations of interest. Friction is another factor deteriorating the position error due to its highly nonlinear behavior. The position error of the linear motor was about 20∼30$\mu\textrm{m}$. After compensating the position errors due to rotational error motions and friction. the remaining errors become about 6~8$\mu\textrm{m}$ and 2~3$\mu\textrm{m}$, respectively. It is shown that the positional accuracy of a linear can be greatly improved by compensating the two error sources.

  • PDF

공작기계의 오차요소 측정을 통한 3차원 위치정밀도 향상 (The enhancement of 3-dimensional positioning accuracy by measuring error factors for CNC machine tools)

  • 손진욱;서석환;정세용;이응석;위현곤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.260-265
    • /
    • 1994
  • Efforts have been devoted to developing rapid and accurate methods for measuring the errors of machine tools. The method os measurement and calibration of machine tool errors should be general and efficient. The objective of this study is to show in detail the full sequence from the measurement of errors factors to the verification of the positioning accuracy after compensation for the volumetric error. In this paper, we described the steps in measuring the volumetric error parameters, a general error model composed of error parameters, temperature, and the desired position. The validity of the error calibration methods proposed in this paper was tested using a vertical 3-axis CNC machine with a laser interferometer and a ball bar.

  • PDF

기상계측 시스템을 이용한 머시닝센터의 기하오차 모델링 및 오차측정 (Modeling and Measurement of Geometric Errors for Machining Center using On-Machine Measurement System)

  • 이재종;양민양
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.201-210
    • /
    • 1999
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric and thermal errors of the machine tools. Therefore, a key requirement for improving te machining accuracy and product quality is to reduce the geometric and thermal errors of machine tools. This study models geometric error for error analysis and develops on-machine measurement system by which the volumetric erors are measured. The geometric error is modeled using form shaping function(FSF) which is defined as the mathematical relationship between form shaping motion of machine tool and machined surface. The constant terms included in the error model are found from the measurement results of on-machine measurement system. The developed on-machine measurement system consists of the spherical ball artifact (SBA), the touch probe unit with a star type stylus, the thermal data logger and the personal computer. Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of ${\pm}2{\mu}m$ in X, Y and Z directions.

  • PDF

Research on a Method for the Optical Measurement of the Rifling Angle of Artillery Based on Angle Error Correction

  • Zhang, Ye;Zheng, Yang
    • Current Optics and Photonics
    • /
    • 제4권6호
    • /
    • pp.500-508
    • /
    • 2020
  • The rifling angle of artillery is an important parameter, and its determination plays a key role in the stability, hit rate, accuracy and service life of artillery. In this study, we propose an optical measurement method for the rifling angle based on angle error correction. The method is based on the principle of geometrical optics imaging, where the rifling on the inner wall of the artillery barrel is imaged on a CCD camera target surface by an optical system. When the measurement system moves in the barrel, the rifling image rotates accordingly. According to the relationship between the rotation angle of the rifling image and the travel distance of the measurement system, different types of rifling equations are established. Solving equations of the rifling angle are deduced according to the definition of the rifling angle. Furthermore, we added an angle error correction function to the method that is based on the theory of dynamic optics. This function can measure and correct the angle error caused by the posture change of the measurement system. Thus, the rifling angle measurement accuracy is effectively improved. Finally, we simulated and analyzed the influence of parameter changes of the measurement system on rifling angle measurement accuracy. The simulation results show that the rifling angle measurement method has high measurement accuracy, and the method can be applied to different types of rifling angle measurements. The method provides the theoretical basis for the development of a high-precision rifling measurement system in the future.