• Title/Summary/Keyword: Accuracy error

Search Result 4,999, Processing Time 0.039 seconds

A study on the diagonal error compensation and squareness measurement of linear motor (리니어 모터의 직각도 측정과 대각선 오차 보정에 관한 연구)

  • Kim J.H.;Lee C.W.;Song J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.287-288
    • /
    • 2006
  • This paper introduces an approach of method to compensate accuracy error of diagonal direction. The measurement of squareness error is an important parameter in performance test of two axis Linear Motor and this exerts influence on accuracy error of diagonal test. However, previous knowledge management approaches are limited in deviation measurement of optical axis or restrictive elements of diagonal measurements using laser interferometer. But this proposed method calculated diagonal accuracy error which was occurred by squareness error and compensated squareness error using orthogonal correction method of PMAC. From this result, diagonal accuracy error is significantly reduced. This experimental results show that geometric error of squareness error is easily corrected by dynamic coordinate correction.

  • PDF

Measurement of Motion Accuracy by Two-dimensional Probe on NC Machine Tools -2nd Report, Measurement of the Linear Motion Accuracy- (2차원 프로브에 의한 NC공작기계의 운동 정밀도 측정 -제2보 직선운동 정밀도 측정-)

  • JEON, Eon Chan;OYAMADA, Shigenori;TSUTSUMI, Masaomi;KAKUTA, Junichro
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.15-21
    • /
    • 1997
  • This paper presented a linear motion accuracy by using two-dimensional probe with the master block and the square for NC machine tools. This measuring system could be measured motion error due to numerical control system. The results of measurement and simulation for motion error were similar, and so, this system had enough accuracy to measure a linear motion accuracy for NC machine tools. The experimental results are as follows. 1. This measuring system could be measured motion error due to mumerical control system. 2. The results of measurement and simulation for motion error were similar. 3. This measuring system had enough accuracy to measure a linear motion accuracy for NC machine tools.

  • PDF

A Study on Improvement of Accuracy using Geometry Information in Reverse Engineering of Injection Molding Parts (사출성형품의 역공학예서 Geometry정보를 이용한 정밀도 향상에 관한 연구)

  • 김연술;이희관;황금종;공영식;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.546-550
    • /
    • 2002
  • This paper proposes an error compensation method that improves accuracy with geometry information of injection molding parts. Geometric information can give an improved accuracy in reverse engineering. Measuring data can not lead to get accurate geometric model, including errors of physical parts and measuring machines. Measuring data include errors which can be classified into two types. One is molding error in product, the other is measuring error. Measuring error includes optical error of laser scanner, deformation by probe forces of CMM and machine error. It is important to compensate these in reverse engineering. Least square method(LSM) provides the cloud data with a geometry compensation, improving accuracy of geometry. Also, the functional shape of a part and design concept can be reconstructed by error compensation using geometry information.

  • PDF

Optimal Variable Selection in a Thermal Error Model for Real Time Error Compensation (실시간 오차 보정을 위한 열변형 오차 모델의 최적 변수 선택)

  • Hwang, Seok-Hyun;Lee, Jin-Hyeon;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.215-221
    • /
    • 1999
  • The object of the thermal error compensation system in machine tools is improving the accuracy of a machine tool through real time error compensation. The accuracy of the machine tool totally depends on the accuracy of thermal error model. A thermal error model can be obtained by appropriate combination of temperature variables. The proposed method for optimal variable selection in the thermal error model is based on correlation grouping and successive regression analysis. Collinearity matter is improved with the correlation grouping and the judgment function which minimizes residual mean square is used. The linear model is more robust against measurement noises than an engineering judgement model that includes the higher order terms of variables. The proposed method is more effective for the applications in real time error compensation because of the reduction in computational time, sufficient model accuracy, and the robustness.

  • PDF

A Study on the Accuracy Analysis for Air-to-Ground Weapon Delivery (공대지 무장투하정확도 해석에 대한 연구)

  • Jo, Han-Sang;Song, Chae-Il;Lee, Sang-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.741-746
    • /
    • 2007
  • In this paper, we propose an accuracy analysis method for air-to-ground weapon delivery. The lethality, which is one of the most important factor to evaluate combat effectiveness of a fighter, depends on the capability to improve the accuracy of the conventional weapon delivery. We present error elements which affect the error analysis for air-to-ground weapon delivery from the initial design phase to the final validation phase. And we introduce an accuracy analysis method to reflect the error elements and to evaluate them quantitatively. We assume zero bias-error and consider random error for the weapon delivery accuracy analysis.

Improvement of Geometric Accuracy Using Constant Force Control (정연삭력 제어를 이용한 형상정도 향상)

  • 김동식;김강석;홍순익;김남경;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.157-161
    • /
    • 1996
  • In the geometric accuracy, most of studies have been concentrated on the analysis of the geometric error, or a control path of grinding using the value of measured geometric error. In this paper, by using the value of measured motor current through hall sensor, detection of the geometric error have been accomplished, and in-process control path of grinding for improvement geometric accuracy, too.

  • PDF

A Study on the Rotation Accuracy According to Unbalance Variation of High Precision Spindle Unit for Machine Tool (고정밀 회전체의 불평형 변동에 따른 회전정밀도 영향에 관한 연구)

  • Kim, Sang-Hwa;Kim, Byung-Ha;Jin, Yong-Gyoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.174-181
    • /
    • 2012
  • The spindle unit is a core part in high precision machine tool. Rotation accuracy of spindle unit is needed for high dignity cutting and improving the performance of machine tool. However, there are many factors to effect to rotational error motion(rotation accuracy). This study studied how rotational error motion is variation when unbalance amount is variation. Rotation accuracy of initial spindle unit is decided depending on parts and assembly such as bearing. When it is rotation, vibration and noise is appeared depending on volume of unbalance amount, so it works to decrease unbalance amount. The purpose of the study tests that unbalance amount how much effects to initial rotation condition. The result of the study shows that accuracy of parts and assembly is highly necessary to reach high rotation accuracy and unbalance amount hardly effects to initial rotation accuracy. However, it shorten spindle's life because vibration and noise is increasing by increasing unbalance amount and we can expect situation that rotation accuracy is falling by long time operation.

5-Axis Cross-Coupling Control System Based on a Novel Real-Time Tool Orientation Error Model (새로운 실시간 공구방향오차 모델에 기초한 5 축 연동제어 시스템)

  • Byun, Je-Hyung;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.48-53
    • /
    • 2010
  • 5-axis CNC machining now is getting popular because it can deal with complex shapes such as impeller, turbine blade and propeller without additional equipment or process, proving a set of various tool orientations. CAM software related to 5-axis machining is being developed quickly so that users can take advantage of potential capacities of 5-axis machine tools. However, only a few researches can be found in the area of control strategy development for 5-axis machining. This paper proposes a 5-axis cross-coupling control system based on a novel tool orientation error model. The proposed tool orientation error model provides accurate information on the tool orientation error in real time, which in turn enables directly controlling the tool orientation accuracy. The proposed control system also employs a contour error model to calculate the contour error and reflect it in the control as well. The accuracy of the proposed tool orientation error model is verified and the performance of the 5-axis cross-coupling control system in terms of both contouring and tool orientation accuracy is evaluated through computer simulations compared with existing 5-axis control systems.

Development of the system for error evaluation in coordinate measuring machines (3차원 좌표 특정기의 오차 평가 시스템 개발)

  • ;M.Burdekin;G.Peggs
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.116-120
    • /
    • 1991
  • Technique of length measurement error is widely used in the accuracy assessment of CMMS(Coordinate measuring machines) and machine tools, as it is simple and direct measurement within the working volume of a machine. In this paper, a new method is proposed for the evaluation of the length measurement error in relation to the volumetric accuracy. lD, 2D, and 3D measuring lines are considered for recpective length measurement error: 1D, 2D, and 3D length measurement uncertainties are evaluated from volumetric accuracy. The relationship between the volumetric accuracy md length measurement error to is discussed. PC based system for length measurement error evaluation and simulation is developed.

  • PDF

Analysis of the Motion Accuracy in Linear Motion Bearing Guide (직선베어링 이송계의 운동정밀도 해석)

  • 김경호;이후상;박천홍;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.179-183
    • /
    • 2000
  • This paper is concerned with achieving the high motion accuracy of linear motion bearing guide according to estimate accuracy average effect of bearing. Accuracy average effect can be obtained b analysis the relationship between motion error of the table and spatial frequency of the rail form error. And influences of ball diameter, ball number, and clock length on block motion error and block number on the table motion error are analyzed theoretically. In addition to, a simple experiment is performed in order to verify theoretical result.

  • PDF