• Title/Summary/Keyword: Accuracy comparison

Search Result 3,228, Processing Time 0.031 seconds

Quality Enhancement of MIROS Wave Radar Data at Ieodo Ocean Research Station Using ANN

  • Donghyun Park;Kideok Do;Miyoung Yun;Jin-Yong Jeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.103-114
    • /
    • 2024
  • Remote sensing wave observation data are crucial when analyzing ocean waves, the main external force of coastal disasters. Nevertheless, it has limitations in accuracy when used in low-wind environments. Therefore, this study collected the raw data from MIROS Wave and Current Radar (MWR) and wave radar at the Ieodo Ocean Research Station (IORS) and applied the optimal filter by combining filters provided by MIROS software. The data were validated by a comparison with South Jeju ocean buoy data. The results showed it maintained accuracy for significant wave height, but errors were observed in significant wave periods and extreme waves. Hence, this study used an artificial neural network (ANN) to improve these errors. The ANN was generalized by separating the data into training and test datasets through stratified sampling, and the optimal model structure was derived by adjusting the hyperparameters. The application of ANN effectively improved the accuracy in significant wave periods and high wave conditions. Consequently, this study reproduced past wave data by enhancing the reliability of the MWR, contributing to understanding wave generation and propagation in storm conditions, and improving the accuracy of wave prediction. On the other hand, errors persisted under high wave conditions because of wave shadow effects, necessitating more data collection and future research.

Discrimination of neutrons and gamma-rays in plastic scintillator based on spiking cortical model

  • Bing-Qi Liu;Hao-Ran Liu;Lan Chang;Yu-Xin Cheng;Zhuo Zuo;Peng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3359-3366
    • /
    • 2023
  • In this study, a spiking cortical model (SCM) based n-g discrimination method is proposed. The SCM-based algorithm is compared with three other methods, namely: (i) the pulse-coupled neural network (PCNN), (ii) the charge comparison, and (iii) the zero-crossing. The objective evaluation criteria used for the comparison are the FoM-value and the time consumption of discrimination. Experimental results demonstrated that our proposed method outperforms the other methods significantly with the highest FoM-value. Specifically, the proposed method exhibits a 34.81% improvement compared with the PCNN, a 50.29% improvement compared with the charge comparison, and a 110.02% improvement compared with the zero-crossing. Additionally, the proposed method features the second-fastest discrimination time, where it is 75.67% faster than the PCNN, 70.65% faster than the charge comparison and 38.4% slower than the zero-crossing. Our study also discusses the role and change pattern of each parameter of the SCM to guide the selection process. It concludes that the SCM's outstanding ability to recognize the dynamic information in the pulse signal, improved accuracy when compared to the PCNN, and better computational complexity enables the SCM to exhibit excellent n-γ discrimination performance while consuming less time.

A New Method for Relative/Quantitative Comparison of Map Built by SLAM (SLAM으로 작성한 지도 품질의 상대적/정량적 비교를 위한 방법 제안)

  • Kwon, Tae-Bum;Chang, Woo-Sok
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.242-249
    • /
    • 2014
  • By a SLAM (simultaneous localization and mapping) method, we get a map of an environment for autonomous navigation of a robot. In this case, we want to know how accurate the map is. Or we want to know which map is more accurate when different maps can be obtained by different SLAM methods. So, several methods for map comparison have been studied, but they have their own drawbacks. In this paper, we propose a new method which compares the accuracy or error of maps relatively and quantitatively. This method sets many corresponding points on both reference map and SLAM map, and computes the translational and rotational values of all corresponding points using least-squares solution. Analyzing the standard deviations of all translational and rotational values, we can know the error of two maps. This method can consider both local and global errors while other methods can deal with one of them, and this is verified by a series of simulations and real world experiments.

A Study for Obtaining Weights in Pairwise Comparison Matrix in AHP

  • Jeong, Hyeong-Chul;Lee, Jong-Chan;Jhun, Myoung-Shic
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.531-541
    • /
    • 2012
  • In this study, we consider various methods to estimate the weights of a pairwise comparison matrix in the Analytic Hierarchy Process widely applied in various decision-making fields. This paper uses a data dependent simulation to evaluate the statistical accuracy, minimum violation and minimum norm of the obtaining weight methods from a reciprocal symmetric matrix. No method dominates others in all criteria. Least squares methods perform best in point of mean squared errors; however, the eigenvectors method has an advantage in the minimum norm.

Measurement of Time Comparison via Broadcasting Satellite (방송위성을 이용한 시각비교 측정)

  • 전인덕;이창복;김진옥;정낙삼
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.3
    • /
    • pp.200-203
    • /
    • 1987
  • A time comparison technique via Broadcasting Satellie is presented. Experiment has been carried out to compare the time of two atomic clocks in KSRi and RRL, by using Japanese Broadcasting Satellite, BS-2a. The time comparison can be made with an accuracy of 0.1us by simultaneous receiving of line-11 horizontal sync, pulses of TV signal.

  • PDF

Comparison of Vehicle Experiment and Computer Simulation of Seat Vibration using Korean Dummy Model (한국인 더미모델을 이용한 시트진동 시뮬레이션과 실차시험의 비교분석)

  • 유완석;김정훈;박동운;이순영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.145-152
    • /
    • 2004
  • This paper compares seat vibrations of a small passenger car and a SUV. The results also include the comparison of the human body accelerations and the ride values, such as the component ride values, and SEAT values of 12 axis accelerations obtained at the human body and seat track. The ride comfort evaluation is usually carried out by experiments of real cars which are expensive and sometimes may contain errors by passenger's postures. Simulations by computer, on the other hand, enable to solve these problems when the accuracy is proven. This paper, thus, also shows the correlation of human body vibration between experiments and computer simulations. For the computer simulation, korean dummy models are developed from the Hybrid III models by scaling the body data of Hybrid III to those of Korean men and women. From the comparison between the test data and simulation data, a nice correlation in trends was shown.

Comparison between analytic and numerical approaches to calculate screening current induced field in HTS magnet

  • Bang, Jeseok;Kim, Seokho;Kim, Jaemin;An, Soobin;Im, Chaemin;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.45-49
    • /
    • 2019
  • This paper reports comparison between analytic and numerical simulation approaches for calculation of screening current and screening current induced field in a high temperature superconductor magnet. Bean slab model is adopted to calculate screening current and SCF analytically, while the finite element method numerically. A case study of screening current and SCF calculation are conducted with a magnet, a 7 T 68 mm cold-bore multi-width no-insulation GdBCO magnet built and tested by Massachusetts Institute of Technology Francis Bitter Magnet Laboratory. In this study, we assume the magnet is dunked in liquid nitrogen at 77 K. Furthermore, the simulation results are compared in terms of computation time and accuracy. Finally, discussion on the different methods together with the comparison between the calculations and experiment is provided.

Dual Capillary Column System for the Qualitative Gas Chromatography: 2. Comparison between Splitless and On-Column Injection Modes

  • Kim, Kyoung-Rae;Kim, Jung-Han;Park, Hyoung-Kook;Oh, Chang-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.250-255
    • /
    • 1993
  • A dual capillary column system is described for the simultaneous analysis of a given sample and measurement of retention index (RI) and area ratio (AR) values of each peak on two capillary columns of different polarity, DB-5 & DB-1701 from a single injection. Both capillary columns were connected to either a splitless injector or an on-column injector via a deactivated fused-silica capillary tubing of 1 m length and a 'Y' splitter. Both injection modes allowed to measure RI and AR values with high reproducibility (<0.01% RSD) and high accuracy (<10% RE), respectively with the exception that the trace and high boiling solutes required the on-column mode for the accurate quantification and AR comparison. When the dual capillary column system in on-column injection mode was applied to the blind samples containing organic acids, each acid was positively indentified by the combined computer RI library search-AR comparison.

Comparison of Motor Skill Acquisition according to Types of Sensory-Stimuli Cue in Serial Reaction Time Task

  • Kwon, Yong Hyun;Lee, Myoung Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.3
    • /
    • pp.191-195
    • /
    • 2014
  • Purpose: The purpose of this study is to investigate whether types of sensory-stimuli cues in terms of visual, auditory, and visuoauditory cues can be affected to motor sequential learning in healthy adults, using serial reaction time task. Methods: Twenty four healthy subjects participated in this study, who were randomly allocated into three groups, in terms of visual-stimuli (VS) group, auditory-stimuli (AS) group, and visuoauditory-stimuli (VAS) group. In SRT task, eight Arabic numbers were adopted as presentational stimulus, which were composed of three different types of presentational modules, in terms of visual, auditory, and visuoauditory stimuli. On an experiment, all subjects performed total 3 sessions relevant to each stimulus module with a pause of 10 minutes for training and pre-/post-tests. At the pre- and post-tests, reaction time and accuracy were calculated. Results: In reaction time, significant differences were founded in terms of between-subjects, within-subjects, and interaction effect for group ${\times}$ repeated factor. In accuracy, no significant differences were observed in between-group and interaction effect for groups ${\times}$ repeated factor. However, a significant main effect of within-subjects was observed. In addition, a significant difference was showed in comparison of differences of changes between the pre- and post-test only in the reaction time among three groups. Conclusion: This study suggest that short-term sequential motor training on one day induced behavioral modification, such as speed and accuracy of motor response. In addition, we found that motor training using visual-stimuli cue showed better effect of motor skill acquisition, compared to auditory and visuoauditory-stimuli cues.

A Comparison of Orbit Determination Performance for the KOMPSAT-2 using Batch Filter and Sequential Filter (아리랑위성 2호 데이터를 이용한 연속추정필터와 배치필터 처리 결과 비교)

  • Cho, Dong-Hyun;Kim, Hae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.149-157
    • /
    • 2012
  • In this paper, the performance of the sequential filter for a space debris collision management system is analyzed by using the flight data of KOMPSAT-2. To analyze the performance of the sequential filter, the results of batch filter used in the orbit determination system of the KOMPSAT-2 ground station is used as reference data. The overlap method is also used to evaluate the orbit accuracy. This paper shows that the orbit determination accuracy of the sequential filter is similar to that of the KOMPSAT-2 ground station, but dissimilar characteristics exist due to the filter difference. In addition, it is also shown that the orbit determination accuracy is order of 1m root mean square by using 30 hour GPS navigation solutions and 6 hour comparison period for the overlap method.