Browse > Article
http://dx.doi.org/10.9714/psac.2019.21.2.045

Comparison between analytic and numerical approaches to calculate screening current induced field in HTS magnet  

Bang, Jeseok (Seoul National University)
Kim, Seokho (Changwon National University)
Kim, Jaemin (Seoul National University)
An, Soobin (Seoul National University)
Im, Chaemin (Seoul National University)
Hahn, Seungyong (Seoul National University)
Publication Information
Progress in Superconductivity and Cryogenics / v.21, no.2, 2019 , pp. 45-49 More about this Journal
Abstract
This paper reports comparison between analytic and numerical simulation approaches for calculation of screening current and screening current induced field in a high temperature superconductor magnet. Bean slab model is adopted to calculate screening current and SCF analytically, while the finite element method numerically. A case study of screening current and SCF calculation are conducted with a magnet, a 7 T 68 mm cold-bore multi-width no-insulation GdBCO magnet built and tested by Massachusetts Institute of Technology Francis Bitter Magnet Laboratory. In this study, we assume the magnet is dunked in liquid nitrogen at 77 K. Furthermore, the simulation results are compared in terms of computation time and accuracy. Finally, discussion on the different methods together with the comparison between the calculations and experiment is provided.
Keywords
HTS magnet; screening current induced field; screening current; bean slab model; edge-element; domain homogenization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Qu, P. C. Michael, J. Bascunan, T. Lecrevisse, M. Guan, S. Hahn and Y. Iwasa, "Test of an 8.66-T REBCO insert coil with overbanding radial build for a 1.3-GHz LTS/HTS NMR magnet," IEEE Trans. Appl. Supercond., vol. 27, no. 4, p. 4600605, 2017
2 S. G. Lee, S. Hahn, J. Kim, J. Y. Jang, Y. J. Hwan, J. Han, Y. Kim, H. Lee, S. H. In, H. K. Yeom, K. M. Kim, K. L. Kim, H. Yang and M. C. Ahn, "Development Progress of Metal-Clad No-Isulation All-REBCO Magnet for 400 MHz High Resolution NMR." Andong, Korea: MEM 18, 2018.
3 J. Y. Jang, S. Yoon, S. Hahn, Y. J. Hwang, J. Kim, K. H. Shin, K. Cheon,Kim, S. In, Y.-J. Hong, H. Yeom, H. Lee, S.-H. Moon and S. Lee, "Design, construction and 13 K conduction-cooled operation of a 3 T 100 mm stainless steel cladding all-REBCO magnet," Supercond. Sci. Technol., vol. 30, no. 10, p. 105012, 2017.   DOI
4 S. Hahn, J. Bascunan, H. Lee, E. S. Bobrov, W. Kim and Y. Iwasa, "Development of a 700 MHz low-/high-temperature superconductor for nuclear magnetic resonance magnet: Test results and spatial homogeneity improvement," Rev. Sci. Instrum., vol. 79, p. 023105, 2008.   DOI
5 S. Hahn, J. Bascunan, H. Lee, E. S. Bobrov, W. Kim, M. C. Ahn and Y. Iwasa, "Operation and performance analyses of 350 and 700 MHz low-high-temperature superconductor nuclear magnetic resonance magnets A march toward operating frequencies above 1 GHz," J. Appl. Phys., vol. 105, no. 2, pp. 0245011-8, 2009.
6 Y. Yanagisawa, H. Nakagome, K. Tennmei, M. Hamada, M. Yoshikawa, Otsuka, M. Hosono, T. Kiyoshi, M. Takahashi, T. Yamazaki and Maeda, "Operation of a 500 MHz high temperature superconducting NMR: Towards an NMR spectrometer operating beyond 1 GH," J. Magn.Reson., vol. 203, no. 2, pp. 274-282, 2010.   DOI
7 M. C. Ahn, T. Yagai, S. Hahn, R. Ando, J. Bascunan and Y. Iwasa, "Spatial and temporal variations of a screening current induced magnetic field in a double-pancake HTS insert of an LTS/HTS NMR magnet," IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 4 301 205-2269-4 301 205-2272, 2009.
8 C. P. Bean, "Magnetization of high-field superconductors," Rev. Mod. Phys., vol. 36, pp. 31-39, 1964.   DOI
9 E. H. Brandt and M. Indenbom, "Type-II-superconductor strip with current in a perpendicular magnetic field," Phys. Rev. B, vol. 48, no. 17, pp. 12893-12906, 1993.   DOI
10 E. Zeldov, J. R. Clem, M. McElfresh and M. Darwin, "Magnetization and transport currents in thin superconducting films," Phys. Rev. B, vol. 49, no. 14, pp. 9802-9822, 1994.   DOI
11 L. Wang, Q. Wang, J. Liu, H. Wang, X. Hu and P. Chen, "Screening current-induced magnetic field in a non-insulated GdBCO HTS coil for a 24 T all-superconducting magnet," IEEE Trans. Appl. Supercond., vol. 27, no. 4, p. 8200106, 2017.
12 C. Navau, N. Del-Valle and A. Sanchez, "Macroscopic modeling of magnetization and levitation of hard type-II superconductors: The criticalstate model," IEEE Trans. Appl. Supercond., vol. 23, no. 1, p. 8201023, 2013.   DOI
13 L. Prigozhin, "Analysis of critical-state problems in type-II superconductivity," IEEE Trans. Appl. Supercond., vol. 7, no. 4, p. 3866-73, 1997.   DOI
14 N. Amemiya, K. Miyamoto, S. Murasawa, H. Muka and K. Ohmatsu, "Finite element analysis of AC loss in non-twisted Bi-2223 tape carrying AC transport current and/or exposed to DC or AC external magnetic field," Physica C, vol. 310, pp. 30-35, 1998.   DOI
15 G. Barnes, M. McCulloch and D. Dew-Hughes, "Computer modelling of type II superconductors in applications," Supercond. Sci. Technol., vol. 12, no. 8, pp. 518-522, 1999.   DOI
16 H. Ueda, Y. Imaichi, T. Wang, A. Ishiyama, S. Noguchi, S. Iwai, H. Miyazaki, T. Tosaka, S. Nomura, T. Kurusu, S. Urayama and H. Fukuyama, "Numerical simulation on magnetic field generated by screening current in 10-T-class REBCO coil," IEEE Trans. Appl. Supercond., vol. 26, no. 4, p. 4701205, 2016.
17 S. Stavrev, F. Grilli, B. Dutoit, N. Nibbio, E. Vinot, I. Klutsch, G. Me-unier, P. Tixador, Y. Yang and E. Martines, "Comparison of numerical methods for modeling of superconductors," IEEE Trans. Magn., vol. 38, no. 2, pp. 849-52, 2002.   DOI
18 M. A. Campbell, "A direct method for obtaining the critical state in two and three dimensions," Supercond. Sci. Technol., vol. 22, no. 3, p. 034005, Jan. 2009.   DOI
19 H. Ueda, M. Fukuda, K. Hatanaka, K. Michitsuji, H. Karino, T. Wang, X. Wang, A. Ishiyama, S. Noguchi, Y. Yanagisawa and H. Maeda, "Measurement and simulation of magnetic field generated by screening currents in HTS coil," IEEE Trans. Appl. Supercond., vol. 24, no. 3, p. 4701505, 2014.
20 S. Kim, K. Sim, J. Cho, H.-M. Jang and M. Park, "AC loss analysis of HTS power cable with RABiTS coated conductor," IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 2130-2133, 2010.   DOI
21 D. N. Nguyen, S. P. Ashworth, J. O. Willis, F. Sirois and F. Grilli, "A new finite-element method simulation model for computing AC loss in roll assisted biaxially textured substrate YBCO tapes," Supercond. Sci. Technol., vol. 23, no. 2, p. 025001, 2009.   DOI
22 M. Zhang and T. A. Coombs, "3D modelling of high- Tc superconductors by finite element software," Supercond. Sci. Technol., vol. 25, no. 1, p. 015009, 2011.   DOI
23 F. Grilli, R. Brambilla, A. S. F. Sirois and S. Memiaghe, "Development of a three-dimensional finite-element model for high-temperature superconductors based on the H-formulation," Cryogenics, vol. 53, pp. 142-147, 2013.   DOI
24 S. Hahn, J. Song, Y. Kim, T. Lecrevisse, Y. Chu, J. Voccio, Bascunan and Y. Iwasa, "Construction and test of 7-T/68-mm cold-bore multiwidth no-insulation GdBCO magnet," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 4600405, 2015.
25 N. Amemiya and K. Akachi, "Magnetic field generated by shielding current in high Tc superconducting coils for NMR magnets," Supercond. Sci. Technol., vol. 21, no. 9, p. 095001, 2008.   DOI
26 L. Queval, V. M. R. Zermeno and F. Grilli, "Numerical models for ac loss calculation in large-scale applications of HTS coated conductors," Supercond. Sci. Technol., vol. 29, no. 2, p. 024007, 2016.   DOI
27 S. Kim, C. Lee and S. Hahn, "Manipulation of screening currents in an (RE)Ba2Cu3O7x Superconducting magnet," Mater. Res. Express, vol. 6, no. 2, pp. 0260041-8, 2018.
28 Y. J. Hwang, S. Hahn, S. G. Lee, J. Y. Jang, J. H. Han, H. Lee, J. Kim, H. Yeom, S. Yoon, K. Kim and M. C. Ahn, "A study on mitigation of screening current induced field with a 3 T 100 mm conduction-cooled metallic cladding REBCO magnet," IEEE Trans. Appl. Supercond., vol. 27, no. 4, p. 4701605, 2017.
29 Y. Iwasa, Case Studies in Superconducting Magnets: Design and Operational Issues, New York, NY, USA: Springer-Verlag, 2009.
30 V. M. R. Zermeno, A. B. Abrahamsen, N. Mijatovic, B. B. Jensen and M. P. Soerensen, "Calculation of AC losses in stacks and coils made of second generation high temperature superconducting tapes for large scale applications," J. Appl. Phys., vol. 114, no. 17, p. 173901, 2013.   DOI
31 R. Brambilla, F. Grilli, L. Martini and F. Sirois, "Integral equations for the current density in thin conductors and their solution by the finite-element method," Supercond. Sci. Technol., vol. 21, no. 10, p. 10500, 2008.
32 S. Wimbush and N. Strickland, "Critical current characterisation of SuNAM SAN04200 2G HTS superconducting wire," accessed 2017-07-07. [Online]. Available: https://doi.org/10.6084/m9.figshare.5182354.v1
33 J. Rhyner, "Magnetic properties and AC-losses of superconductors with power-law current-voltage characteristics," Physica C, vol. 212, pp. 292-300, 1993.   DOI