DOI QR코드

DOI QR Code

Comparison between analytic and numerical approaches to calculate screening current induced field in HTS magnet

  • Received : 2019.02.21
  • Accepted : 2019.05.26
  • Published : 2019.06.30

Abstract

This paper reports comparison between analytic and numerical simulation approaches for calculation of screening current and screening current induced field in a high temperature superconductor magnet. Bean slab model is adopted to calculate screening current and SCF analytically, while the finite element method numerically. A case study of screening current and SCF calculation are conducted with a magnet, a 7 T 68 mm cold-bore multi-width no-insulation GdBCO magnet built and tested by Massachusetts Institute of Technology Francis Bitter Magnet Laboratory. In this study, we assume the magnet is dunked in liquid nitrogen at 77 K. Furthermore, the simulation results are compared in terms of computation time and accuracy. Finally, discussion on the different methods together with the comparison between the calculations and experiment is provided.

Keywords

CJJOCB_2019_v21n2_45_f0001.png 이미지

Fig. 1. Bean slab model: (a) virgin state; (b) exposed to an external magnetic field. Dash lines shown in (b) is equal to the field (𝐻) graph in (a). The x-axis indicates the width of an HTS tape.

CJJOCB_2019_v21n2_45_f0002.png 이미지

Fig. 2. The three cases of Bean slab model carrying DC transport current; $H_{a, 1-3}^{+/-}$ is a boundary field at the edge of an HTS tape. The x-axis indicates the width of an HTS tape.

CJJOCB_2019_v21n2_45_f0003.png 이미지

Fig. 3. SuNAM HTS tape critical current (𝐼𝑐) information measured at 77 K.

CJJOCB_2019_v21n2_45_f0004.png 이미지

Fig. 4. Simulation results.

CJJOCB_2019_v21n2_45_f0005.png 이미지

Fig. 5. Calculation and measurement results of total axial magnetic flux density.

CJJOCB_2019_v21n2_45_f0006.png 이미지

Fig. 6. Screening current induced field calculated by each approach and measured by MIT Francis Bitter Magnet Laboratory.

CJJOCB_2019_v21n2_45_f0007.png 이미지

Fig. 7. Simulation results of the radial component of total magnetic flux density and SCF.

TABLE Ⅰ KEY PARAMETERS OF THE 7 T 68 MM COLD BORE NI MAGNET.

CJJOCB_2019_v21n2_45_t0001.png 이미지

TABLE Ⅱ COMPUTATION TIME AND CALCULATION ACCURACY.

CJJOCB_2019_v21n2_45_t0002.png 이미지

References

  1. S. G. Lee, S. Hahn, J. Kim, J. Y. Jang, Y. J. Hwan, J. Han, Y. Kim, H. Lee, S. H. In, H. K. Yeom, K. M. Kim, K. L. Kim, H. Yang and M. C. Ahn, "Development Progress of Metal-Clad No-Isulation All-REBCO Magnet for 400 MHz High Resolution NMR." Andong, Korea: MEM 18, 2018.
  2. J. Y. Jang, S. Yoon, S. Hahn, Y. J. Hwang, J. Kim, K. H. Shin, K. Cheon,Kim, S. In, Y.-J. Hong, H. Yeom, H. Lee, S.-H. Moon and S. Lee, "Design, construction and 13 K conduction-cooled operation of a 3 T 100 mm stainless steel cladding all-REBCO magnet," Supercond. Sci. Technol., vol. 30, no. 10, p. 105012, 2017. https://doi.org/10.1088/1361-6668/aa8354
  3. S. Hahn, J. Bascunan, H. Lee, E. S. Bobrov, W. Kim and Y. Iwasa, "Development of a 700 MHz low-/high-temperature superconductor for nuclear magnetic resonance magnet: Test results and spatial homogeneity improvement," Rev. Sci. Instrum., vol. 79, p. 023105, 2008. https://doi.org/10.1063/1.2835901
  4. S. Hahn, J. Bascunan, H. Lee, E. S. Bobrov, W. Kim, M. C. Ahn and Y. Iwasa, "Operation and performance analyses of 350 and 700 MHz low-high-temperature superconductor nuclear magnetic resonance magnets A march toward operating frequencies above 1 GHz," J. Appl. Phys., vol. 105, no. 2, pp. 0245011-8, 2009.
  5. Y. Yanagisawa, H. Nakagome, K. Tennmei, M. Hamada, M. Yoshikawa, Otsuka, M. Hosono, T. Kiyoshi, M. Takahashi, T. Yamazaki and Maeda, "Operation of a 500 MHz high temperature superconducting NMR: Towards an NMR spectrometer operating beyond 1 GH," J. Magn.Reson., vol. 203, no. 2, pp. 274-282, 2010. https://doi.org/10.1016/j.jmr.2010.01.007
  6. T. Qu, P. C. Michael, J. Bascunan, T. Lecrevisse, M. Guan, S. Hahn and Y. Iwasa, "Test of an 8.66-T REBCO insert coil with overbanding radial build for a 1.3-GHz LTS/HTS NMR magnet," IEEE Trans. Appl. Supercond., vol. 27, no. 4, p. 4600605, 2017
  7. M. C. Ahn, T. Yagai, S. Hahn, R. Ando, J. Bascunan and Y. Iwasa, "Spatial and temporal variations of a screening current induced magnetic field in a double-pancake HTS insert of an LTS/HTS NMR magnet," IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 4 301 205-2269-4 301 205-2272, 2009.
  8. C. P. Bean, "Magnetization of high-field superconductors," Rev. Mod. Phys., vol. 36, pp. 31-39, 1964. https://doi.org/10.1103/RevModPhys.36.31
  9. E. H. Brandt and M. Indenbom, "Type-II-superconductor strip with current in a perpendicular magnetic field," Phys. Rev. B, vol. 48, no. 17, pp. 12893-12906, 1993. https://doi.org/10.1103/PhysRevB.48.12893
  10. E. Zeldov, J. R. Clem, M. McElfresh and M. Darwin, "Magnetization and transport currents in thin superconducting films," Phys. Rev. B, vol. 49, no. 14, pp. 9802-9822, 1994. https://doi.org/10.1103/PhysRevB.49.9802
  11. L. Wang, Q. Wang, J. Liu, H. Wang, X. Hu and P. Chen, "Screening current-induced magnetic field in a non-insulated GdBCO HTS coil for a 24 T all-superconducting magnet," IEEE Trans. Appl. Supercond., vol. 27, no. 4, p. 8200106, 2017.
  12. C. Navau, N. Del-Valle and A. Sanchez, "Macroscopic modeling of magnetization and levitation of hard type-II superconductors: The criticalstate model," IEEE Trans. Appl. Supercond., vol. 23, no. 1, p. 8201023, 2013. https://doi.org/10.1109/TASC.2012.2232916
  13. L. Prigozhin, "Analysis of critical-state problems in type-II superconductivity," IEEE Trans. Appl. Supercond., vol. 7, no. 4, p. 3866-73, 1997. https://doi.org/10.1109/77.659440
  14. N. Amemiya, K. Miyamoto, S. Murasawa, H. Muka and K. Ohmatsu, "Finite element analysis of AC loss in non-twisted Bi-2223 tape carrying AC transport current and/or exposed to DC or AC external magnetic field," Physica C, vol. 310, pp. 30-35, 1998. https://doi.org/10.1016/S0921-4534(98)00428-6
  15. G. Barnes, M. McCulloch and D. Dew-Hughes, "Computer modelling of type II superconductors in applications," Supercond. Sci. Technol., vol. 12, no. 8, pp. 518-522, 1999. https://doi.org/10.1088/0953-2048/12/8/308
  16. S. Stavrev, F. Grilli, B. Dutoit, N. Nibbio, E. Vinot, I. Klutsch, G. Me-unier, P. Tixador, Y. Yang and E. Martines, "Comparison of numerical methods for modeling of superconductors," IEEE Trans. Magn., vol. 38, no. 2, pp. 849-52, 2002. https://doi.org/10.1109/20.996219
  17. N. Amemiya and K. Akachi, "Magnetic field generated by shielding current in high Tc superconducting coils for NMR magnets," Supercond. Sci. Technol., vol. 21, no. 9, p. 095001, 2008. https://doi.org/10.1088/0953-2048/21/9/095001
  18. M. A. Campbell, "A direct method for obtaining the critical state in two and three dimensions," Supercond. Sci. Technol., vol. 22, no. 3, p. 034005, Jan. 2009. https://doi.org/10.1088/0953-2048/22/3/034005
  19. H. Ueda, M. Fukuda, K. Hatanaka, K. Michitsuji, H. Karino, T. Wang, X. Wang, A. Ishiyama, S. Noguchi, Y. Yanagisawa and H. Maeda, "Measurement and simulation of magnetic field generated by screening currents in HTS coil," IEEE Trans. Appl. Supercond., vol. 24, no. 3, p. 4701505, 2014.
  20. H. Ueda, Y. Imaichi, T. Wang, A. Ishiyama, S. Noguchi, S. Iwai, H. Miyazaki, T. Tosaka, S. Nomura, T. Kurusu, S. Urayama and H. Fukuyama, "Numerical simulation on magnetic field generated by screening current in 10-T-class REBCO coil," IEEE Trans. Appl. Supercond., vol. 26, no. 4, p. 4701205, 2016.
  21. S. Kim, K. Sim, J. Cho, H.-M. Jang and M. Park, "AC loss analysis of HTS power cable with RABiTS coated conductor," IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 2130-2133, 2010. https://doi.org/10.1109/TASC.2010.2041439
  22. D. N. Nguyen, S. P. Ashworth, J. O. Willis, F. Sirois and F. Grilli, "A new finite-element method simulation model for computing AC loss in roll assisted biaxially textured substrate YBCO tapes," Supercond. Sci. Technol., vol. 23, no. 2, p. 025001, 2009. https://doi.org/10.1088/0953-2048/23/2/025001
  23. M. Zhang and T. A. Coombs, "3D modelling of high- Tc superconductors by finite element software," Supercond. Sci. Technol., vol. 25, no. 1, p. 015009, 2011. https://doi.org/10.1088/0953-2048/25/1/015009
  24. F. Grilli, R. Brambilla, A. S. F. Sirois and S. Memiaghe, "Development of a three-dimensional finite-element model for high-temperature superconductors based on the H-formulation," Cryogenics, vol. 53, pp. 142-147, 2013. https://doi.org/10.1016/j.cryogenics.2012.03.007
  25. L. Queval, V. M. R. Zermeno and F. Grilli, "Numerical models for ac loss calculation in large-scale applications of HTS coated conductors," Supercond. Sci. Technol., vol. 29, no. 2, p. 024007, 2016. https://doi.org/10.1088/0953-2048/29/2/024007
  26. S. Kim, C. Lee and S. Hahn, "Manipulation of screening currents in an (RE)Ba2Cu3O7x Superconducting magnet," Mater. Res. Express, vol. 6, no. 2, pp. 0260041-8, 2018.
  27. S. Hahn, J. Song, Y. Kim, T. Lecrevisse, Y. Chu, J. Voccio, Bascunan and Y. Iwasa, "Construction and test of 7-T/68-mm cold-bore multiwidth no-insulation GdBCO magnet," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 4600405, 2015.
  28. Y. J. Hwang, S. Hahn, S. G. Lee, J. Y. Jang, J. H. Han, H. Lee, J. Kim, H. Yeom, S. Yoon, K. Kim and M. C. Ahn, "A study on mitigation of screening current induced field with a 3 T 100 mm conduction-cooled metallic cladding REBCO magnet," IEEE Trans. Appl. Supercond., vol. 27, no. 4, p. 4701605, 2017.
  29. Y. Iwasa, Case Studies in Superconducting Magnets: Design and Operational Issues, New York, NY, USA: Springer-Verlag, 2009.
  30. V. M. R. Zermeno, A. B. Abrahamsen, N. Mijatovic, B. B. Jensen and M. P. Soerensen, "Calculation of AC losses in stacks and coils made of second generation high temperature superconducting tapes for large scale applications," J. Appl. Phys., vol. 114, no. 17, p. 173901, 2013. https://doi.org/10.1063/1.4827375
  31. R. Brambilla, F. Grilli, L. Martini and F. Sirois, "Integral equations for the current density in thin conductors and their solution by the finite-element method," Supercond. Sci. Technol., vol. 21, no. 10, p. 10500, 2008.
  32. J. Rhyner, "Magnetic properties and AC-losses of superconductors with power-law current-voltage characteristics," Physica C, vol. 212, pp. 292-300, 1993. https://doi.org/10.1016/0921-4534(93)90592-E
  33. S. Wimbush and N. Strickland, "Critical current characterisation of SuNAM SAN04200 2G HTS superconducting wire," accessed 2017-07-07. [Online]. Available: https://doi.org/10.6084/m9.figshare.5182354.v1