• 제목/요약/키워드: Accuracy analysis

검색결과 11,863건 처리시간 0.035초

Korean Sentiment Analysis Using Natural Network: Based on IKEA Review Data

  • Sim, YuJeong;Yun, Dai Yeol;Hwang, Chi-gon;Moon, Seok-Jae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.173-178
    • /
    • 2021
  • In this paper, we find a suitable methodology for Korean Sentiment Analysis through a comparative experiment in which methods of embedding and natural network models are learned at the highest accuracy and fastest speed. The embedding method compares word embeddeding and Word2Vec. The model compares and experiments representative neural network models CNN, RNN, LSTM, GRU, Bi-LSTM and Bi-GRU with IKEA review data. Experiments show that Word2Vec and BiGRU had the highest accuracy and second fastest speed with 94.23% accuracy and 42.30 seconds speed. Word2Vec and GRU were found to have the third highest accuracy and fastest speed with 92.53% accuracy and 26.75 seconds speed.

건설현장 MMS 라이다 기반 점군 데이터의 정확도 분석 (Accuracy Analysis of Point Cloud Data Produced Via Mobile Mapping System LiDAR in Construction Site)

  • 박재우;염동준
    • 한국산업융합학회 논문집
    • /
    • 제25권3호
    • /
    • pp.397-406
    • /
    • 2022
  • Recently, research and development to revitalize smart construction are being actively carried out. Accordingly, 3D mapping technology that digitizes construction site is drawing attention. To create a 3D digital map for construction site a point cloud generation method based on LiDAR(Light detection and ranging) using MMS(Mobile mapping system) is mainly used. The purpose of this study is to analyze the accuracy of MMS LiDAR-based point cloud data. As a result, accuracy of MMS point cloud data was analyzed as dx = 0.048m, dy = 0.018m, dz = 0.045m on average. In future studies, accuracy comparison of point cloud data produced via UAV(Unmanned aerial vegicle) photogrammetry and MMS LiDAR should be studied.

Error Model and Accuracy Analysis of a Cubic Parallel Device

  • Lim, Seung-Reung;Park, Woo-Chun;Song, Jae-Bok;Daehie Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.75-80
    • /
    • 2001
  • An error analysis is very important to estimate performance of a precision machine. This study proposes an error analysis for a new parallel device, a cubic parallel device. The cubic parallel manipulator has error sources including upper and lower universal joint errors due to the directional changes in the link and actuation errors. The maximum errors of the end effector are affected by the axial direction changes of each links and the clearances of the universal joints when the parallel manipulator is moving along a path. It is found that the changes of errors mostly occur at the positions where the directions of exerting link forces shift. The error analysis is based on an error model formed from the relation between the universal point errors and the end-effector accuracy. The analysis method can be also used in predicting the accuracy of other parallel devices.

  • PDF

GRASS와 Arc/Info를 이용한 DEM 데이터의 정확도와 에러 측정 (The Measurements of Data Accuracy and Error Detection in DEM using GRASS and Arc/Info)

  • 조성민
    • 한국지리정보학회지
    • /
    • 제1권1호
    • /
    • pp.3-7
    • /
    • 1998
  • GIS 데이타의 정확도 문제는 DEM과 같은 데이터의 유용성과 적용에 대한 서로 다른 견해를 불러 일으킨다. 데이터의 정확성은 좌표의 정확한 위치와 속성정보를 무작위적으로 검색하여 결정할 수 있다. DEM은 과거 보다는 손쉽게 취득할수 있고 이를 처리할수 있는 소프트웨어도 다양해 졌으나 GIS의 응용은 이미 만들어진 데이터에 따라 그 결과가 달라질수 있으므로 데이터의 정확도와 에러에 대한 주의를 기울일 필요가 있다. 본 연구의 목적은 1:24,000과 1:250,000 DEM 데이터를 이용하여 DEM의 정확도를 검색하고 데이터가 지닌 에러를 찾아내는 방법을 모색하는데 있다. GRASS와 Arc/Info를 이용하여 DEM을 레이어로 만들어내는 과정 또한 연구 되었다. 연구지역은 250 $km^2$의 면적을 지녔으며 연구 결과 1:250,000 DEM에서는 실제 등고값이 정상적으로 처리 되었으나 1:24,000 DEM에서는 실제의 등고값이 아닌 0으로 표현된 에러가 발견되었다.

Development of accuracy enhancement system for boron meters using multisensitive detector for reactor safety

  • Sung, Si Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.538-543
    • /
    • 2020
  • Boric acid is used as a coolant for pressurized-water reactors, and the degree of burnup is controlled by the concentration of boric acid. Therefore, accurate measurement of the concentration of boric acid is an important factor in reactor safety. An improved system was proposed for the accurate determination of boron concentration. A new boron-concentration measurement technique, called multisensitive detection, was developed to improve the measurement accuracy of boron meters. In previous studies, laboratory-scale experiments were performed based on different sensitivity detectors, confirming a 65% better accuracy than conventional single-detector boron meters. Based on these experimental results, an experimental system simulating the coolant-circulation environment in the reactor was constructed; accuracy analysis of the boron meter with a multisensitivity detector was performed at the actual coolant pressure and temperature. In this study, the boron concentration conversion equation was derived from the calibration test, and the accuracy of the boron concentration conversion equation was examined through a repeatability test. Through the experiment, it was confirmed that the accuracy was up to 87.5% higher than the conventional single-detector boron meter.

역량스펙트럼법을 이용한 교량의 내진성능평가 (Evaluation of Seismic Performance for Bridge Structure Using Capacity Spectrum Method)

  • 이창수;김승익;김현겸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.75-80
    • /
    • 2000
  • Evaluation method of seismic performance has mainly used elastic spectrum analysis. This method has simplicity of analysis but deficiency of accuracy. And evaluation method of seismic performance using inelastic dynamic analysis reflects accurately inelasticity of material but hardly reflects site effects. This study suggested evaluation scheme of seismic performance for bridge structure using capacity spectrum method applied inelastic static analysis and standard design response spectrum of Korea Standard Specification for Highway Bridge. Two results, capacity spectrum method and inelastic dynamic analysis method, are very similar. As a result, this study appropriately supply both simplicity of analysis and accuracy of result.

  • PDF

Evaluating the accuracy of mass scaling method in non-linear quasi-static finite element analysis of RC structures

  • A. Yeganeh-Salman;M. Lezgy-Nazargah
    • Structural Engineering and Mechanics
    • /
    • 제85권4호
    • /
    • pp.485-500
    • /
    • 2023
  • The non-linear static analysis of reinforced concrete (RC) structures using the three-dimensional (3D) finite element method is a time-consuming and challenging task. Moreover, this type of analysis encounters numerical problems such as the lack of convergence of results in the stages of growth and propagation of cracks in the structure. The time integration analysis along with the mass scaling (MS) technique is usually used to overcome these limitations. Despite the use of this method in the 3D finite element analysis of RC structures, a comprehensive study has not been conducted so far to assess the effects of the MS method on the accuracy of results. This study aims to evaluate the accuracy of the MS method in the non-linear quasi-static finite element analysis of RC structures. To this aim, different types of RC structures were simulated using the finite element approach based on the implicit time integration method and the mass scaling technique. The influences of effective parameters of the MS method (i.e., the allowable values of increase in the mass of the RC structure, the relationship between the duration of the applied load and fundamental vibration period of the RC structure, and the pattern of applied loads) on the accuracy of the simulated results were investigated. The accuracy of numerical simulation results has been evaluated through comparison with existing experimental data. The results of this study show that the achievement of accurate structural responses in the implicit time integration analyses using the MS method involves the appropriate selection of the effective parameters of the MS method.

철강 용접부 열해석 정도 향상에 관한 연구 (A Study on the Improvement of Numerical Thermal Analysis for Steel Welds)

  • 강윤희;김충명;홍현욱;이종봉
    • Journal of Welding and Joining
    • /
    • 제25권5호
    • /
    • pp.36-44
    • /
    • 2007
  • This paper is the first part of the study on the accuracy improvement of numerical analysis of steel welds. The aim of this paper is to raise the accuracy of thermal analysis results, such as the shape and size of the weld cross section and the hardness distribution in HAZ(Heat-Affected Zone). It is known that the factors affecting on the accuracy are thermal properties, metallurgical properties and welding heat source model. It was found that the arbitrary distributed heat source model should be used to predict practical weld cross section shape and size. Also, in order to improve the prediction accuracy of HAZ hardness distribution, it was essential to consider 2 CCT(Continuous Cooling Transformation) diagrams in calculating volume fraction of transformed phases. One is the peak temperature being around melting temperature. The other is the peak temperature being around metallurgical transformation temperature.

Fast Analysis of Film Thickness in Spectroscopic Reflectometry using Direct Phase Extraction

  • Kim, Kwangrak;Kwon, Soonyang;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • 제1권1호
    • /
    • pp.29-33
    • /
    • 2017
  • A method for analysis of thin film thickness in spectroscopic reflectometry is proposed. In spectroscopic reflectometry, there has been a trade-off between accuracy and computation speed using the conventional analysis algorithms. The trade-off originated from the nonlinearity of spectral reflectance with respect to film thickness. In this paper, the spectral phase is extracted from spectral reflectance, and the thickness of the film can be calculated by linear equations. By using the proposed method, film thickness can be measured very fast with high accuracy. The simulation result shows that the film thickness can be acquired with high accuracy. In the simulation, analysis error is lower than 0.01% in the thickness range from 100 nm to 4 um. The experiments also show good accuracy. Maximum error is under $40{\AA}$ in the thickness range $3,000-20,000{\AA}$. The experiments present that the proposed method is very fast. It takes only 2.6 s for volumetric thickness analysis of 640*480 pixels. The study suggests that the method can be a useful tool for the volumetric thickness measurement in display and semiconductor industries.

용접이상화에 의한 용접부정의 예측과 정도 (Prediction of Welding Imperfection with Idealization of Welding and Their Accuracy)

  • 이재익;장경호;김유철
    • Journal of Welding and Joining
    • /
    • 제31권5호
    • /
    • pp.15-19
    • /
    • 2013
  • In order to reduce a grand compute time in prediction of welding distortion and residual stress by 3D thermal elastic plastic analysis, idealization of welding that is methods to heat input simultaneously in all weld metal on the same welding direction is carried out on two weld joints(butt welding and fillet welding). Then, the accuracy of acquired results is investigated through the comparison of the high accuracy prediction results. The thermal conduction analysis results by idealization of welding, the temperature is raised accompany with beginning of heat input because all of weld metal is heated input at the same time. On the other side, the temperature witch predicted with high accuracy is raised at the moment heating source passes the measuring points. So, there is difference of time between idealization of welding and considering of moving heat source faithfully. However, temperature history by idealization of welding is well simulated a high accuracy prediction results.