• Title/Summary/Keyword: Accuracy Verification

Search Result 1,058, Processing Time 0.034 seconds

Dose verification for Gated Volumetric Modulated Arc Therapy according to Respiratory period (호흡연동 용적변조 회전방사선치료에서 호흡주기에 따른 선량전달 정확성 검증)

  • Jeon, Soo Dong;Bae, Sun Myung;Yoon, In Ha;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • Purpose : The purpose of this study is to verify the accuracy of dose delivery according to the patient's breathing cycle in Gated Volumetric Modulated Arc Therapy Materials and Methods : TrueBeam STxTM(Varian Medical System, Palo Alto, CA) was used in this experiment. The Computed tomography(CT) images that were acquired with RANDO Phantom(Alderson Research Laboratories Inc. Stamford. CT, USA), using Computerized treatment planning system(Eclipse 10.0, Varian, USA), were used to create VMAT plans using 10MV FFF with 1500 cGy/fx (case 1, 2, 3) and 220 cGy/fx(case 4, 5, 6) of doserate of 1200 MU/min. The regular respiratory period of 1.5, 2.5, 3.5 and 4.5 sec and the patients respiratory period of 2.2 and 3.5 sec were reproduced with the $QUASAR^{TM}$ Respiratory Motion Phantom(Modus Medical Devices Inc), and it was set up to deliver radiation at the phase mode between the ranges of 30 to 70%. The results were measured at respective respiratory conditions by a 2-Dimensional ion chamber array detector(I'mRT Matrixx, IBA Dosimetry, Germany) and a MultiCube Phantom(IBA Dosimetry, Germany), and the Gamma pass rate(3 mm, 3%) were compared by the IMRT analysis program(OmniPro I'mRT system software Version 1.7b, IBA Dosimetry, Germany) Results : The gamma pass rates of Case 1, 2, 3, 4, 5 and 6 were the results of 100.0, 97.6, 98.1, 96.3, 93.0, 94.8% at a regular respiratory period of 1.5 sec and 98.8, 99.5, 97.5, 99.5, 98.3, 99.6% at 2.5 sec, 99.6, 96.6, 97.5, 99.2, 97.8, 99.1% at 3.5 sec and 99.4, 96.3, 97.2, 99.0, 98.0, 99.3% at 4.5 sec, respectively. When a patient's respiration was reproduced, 97.7, 95.4, 96.2, 98.9, 96.2, 98.4% at average respiratory period of 2.2 sec, and 97.3, 97.5, 96.8, 100.0, 99.3, 99.8% at 3.5 sec, respectively. Conclusion : The experiment showed clinically reliable results of a Gamma pass rate of 95% or more when 2.5 sec or more of a regular breathing period and the patient's breathing were reproduced. While it showed the results of 93.0% and 94.8% at a regular breathing period of 1.5 sec of Case 5 and 6, it could be confirmed that the accurate dose delivery could be possible on the most respiratory conditions because based on the results of 100 patients's respiratory period analysis as no one sustained a respiration of 1.5 sec. But, pretreatment dose verification should be precede because we can't exclude the possibility of error occurrence due to extremely short respiratory period, also a training at the simulation and careful monitoring are necessary for a patient to maintain stable breathing. Consequently, more reliable and accurate treatments can be administered.

A Study on the Availability of the On-Board Imager(OBI) and Cone-Beam CT(CBCT) in the Verification of Patient Set-up (온보드 영상장치(On-Board Imager) 및 콘빔CT(CBCT)를 이용한 환자 자세 검증의 유용성에 대한 연구)

  • Bak, Jino;Park, Sung-Ho;Park, Suk-Won
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Purpose: On-line image guided radiation therapy(on-line IGRT) and(kV X-ray images or cone beam CT images) were obtained by an on-board imager(OBI) and cone beam CT(CBCT), respectively. The images were then compared with simulated images to evaluate the patient's setup and correct for deviations. The setup deviations between the simulated images(kV or CBCT images), were computed from 2D/2D match or 3D/3D match programs, respectively. We then investigated the correctness of the calculated deviations. Materials and Methods: After the simulation and treatment planning for the RANDO phantom, the phantom was positioned on the treatment table. The phantom setup process was performed with side wall lasers which standardized treatment setup of the phantom with the simulated images, after the establishment of tolerance limits for laser line thickness. After a known translation or rotation angle was applied to the phantom, the kV X-ray images and CBCT images were obtained. Next, 2D/2D match and 3D/3D match with simulation CT images were taken. Lastly, the results were analyzed for accuracy of positional correction. Results: In the case of the 2D/2D match using kV X-ray and simulation images, a setup correction within $0.06^{\circ}$ for rotation only, 1.8 mm for translation only, and 2.1 mm and $0.3^{\circ}$ for both rotation and translation, respectively, was possible. As for the 3D/3D match using CBCT images, a correction within $0.03^{\circ}$ for rotation only, 0.16 mm for translation only, and 1.5 mm for translation and $0.0^{\circ}$ for rotation, respectively, was possible. Conclusion: The use of OBI or CBCT for the on-line IGRT provides the ability to exactly reproduce the simulated images in the setup of a patient in the treatment room. The fast detection and correction of a patient's positional error is possible in two dimensions via kV X-ray images from OBI and in three dimensions via CBCT with a higher accuracy. Consequently, the on-line IGRT represents a promising and reliable treatment procedure.

Basic Research on the Possibility of Developing a Landscape Perceptual Response Prediction Model Using Artificial Intelligence - Focusing on Machine Learning Techniques - (인공지능을 활용한 경관 지각반응 예측모델 개발 가능성 기초연구 - 머신러닝 기법을 중심으로 -)

  • Kim, Jin-Pyo;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.70-82
    • /
    • 2023
  • The recent surge of IT and data acquisition is shifting the paradigm in all aspects of life, and these advances are also affecting academic fields. Research topics and methods are being improved through academic exchange and connections. In particular, data-based research methods are employed in various academic fields, including landscape architecture, where continuous research is needed. Therefore, this study aims to investigate the possibility of developing a landscape preference evaluation and prediction model using machine learning, a branch of Artificial Intelligence, reflecting the current situation. To achieve the goal of this study, machine learning techniques were applied to the landscaping field to build a landscape preference evaluation and prediction model to verify the simulation accuracy of the model. For this, wind power facility landscape images, recently attracting attention as a renewable energy source, were selected as the research objects. For analysis, images of the wind power facility landscapes were collected using web crawling techniques, and an analysis dataset was built. Orange version 3.33, a program from the University of Ljubljana was used for machine learning analysis to derive a prediction model with excellent performance. IA model that integrates the evaluation criteria of machine learning and a separate model structure for the evaluation criteria were used to generate a model using kNN, SVM, Random Forest, Logistic Regression, and Neural Network algorithms suitable for machine learning classification models. The performance evaluation of the generated models was conducted to derive the most suitable prediction model. The prediction model derived in this study separately evaluates three evaluation criteria, including classification by type of landscape, classification by distance between landscape and target, and classification by preference, and then synthesizes and predicts results. As a result of the study, a prediction model with a high accuracy of 0.986 for the evaluation criterion according to the type of landscape, 0.973 for the evaluation criterion according to the distance, and 0.952 for the evaluation criterion according to the preference was developed, and it can be seen that the verification process through the evaluation of data prediction results exceeds the required performance value of the model. As an experimental attempt to investigate the possibility of developing a prediction model using machine learning in landscape-related research, this study was able to confirm the possibility of creating a high-performance prediction model by building a data set through the collection and refinement of image data and subsequently utilizing it in landscape-related research fields. Based on the results, implications, and limitations of this study, it is believed that it is possible to develop various types of landscape prediction models, including wind power facility natural, and cultural landscapes. Machine learning techniques can be more useful and valuable in the field of landscape architecture by exploring and applying research methods appropriate to the topic, reducing the time of data classification through the study of a model that classifies images according to landscape types or analyzing the importance of landscape planning factors through the analysis of landscape prediction factors using machine learning.

Performance Test of Portable Hand-Held HPGe Detector Prototype for Safeguard Inspection (안전조치 사찰을 위한 휴대형 HPGe 검출기 시제품 성능평가 실험)

  • Kwak, Sung-Woo;Ahn, Gil Hoon;Park, Iljin;Ham, Young Soo;Dreyer, Jonathan
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.54-60
    • /
    • 2014
  • IAEA has employed various types of radiation detectors - HPGe, NaI, CZT - for accountancy of nuclear material. Among them, HPGe has been mainly used in verification activities required for high accuracy. Due to its essential cooling component(a liquid-nitrogen cooling or a mechanical cooling system), it is large and heavy and needs long cooling time before use. New hand-held portable HPGe has been developed to address such problems. This paper deals with results of performance evaluation test of the new hand-held portable HPGe prototype which was used during IAEA's inspection activities. Radioactive spectra obtained with the new portable HPGe showed different characteristics depending on types and enrichments of nuclear materials inspected. Also, Gamma-rays from daughter radioisotopes in the decay series of $^{235}U$ and $^{238}U$ and characteristic x-rays from uranium were able to be remarkably separated from other peaks in the spectra. A relative error of enrichment measured by the new portable HPGe was in the range of 9 to 27%. The enrichment measurement results didn't meet partially requirement of IAEA because of a small size of a radiation sensing material. This problem might be solved through a further study. This paper discusses how to determine enrichment of nuclear material as well as how to apply the new hand-held portable HPGe to safeguard inspection. There have been few papers to deal with IAEA inspection activity in Korea to verify accountancy of nuclear material in national nuclear facilities. This paper would contribute to analyzing results of safeguards inspection. Also, it is expected that things discussed about further improvement of a radiation detector would make contribution to development of a radiation detector in the related field.

The Patient Specific QA of IMRT and VMAT Through the AAPM Task Group Report 119 (AAPM TG-119 보고서를 통한 세기조절방사선치료(IMRT)와 부피적세기조절회전치료(VMAT)의 치료 전 환자별 정도관리)

  • Kang, Dong-Jin;Jung, Jae-Yong;Kim, Jong-Ha;Park, Seung;Lee, Keun-Sub;Sohn, Seung-Chang;Shin, Young-Joo;Kim, Yon-Lae
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.255-263
    • /
    • 2012
  • The aim of this study was to evaluate the patient specific quality assurance (QA) results of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) through the AAPM Task Group Report 119. Using the treatment planning system, both IMRT and VMAT treatment plans were established. The absolute dose and relative dose for the target and OAR were measured by using an ion chamber and the bi-planar diode array, respectively. The plan evaluation was used by the Dose volume histogram (DVH) and the dose verification was implemented by compare the measured value with the calculated value. For the evaluation of plan, in case of prostate, both IMRT and VMAT were closed the goal of target and OARs. In case of H&N and Multi-target, IMRT was not reached the goal of target, but VMAT was reached the goal of target and OARs. In case of C-shape(easy), both were reached the goal of target and OARs. In case of C-shape(hard), both were reached the goal of target but not reached the goal of OARs. For the evaluation of absolute dose, in case of IMRT, the mean of relative error (%) between measured and calculated value was $1.24{\pm}2.06%$ and $1.4{\pm}2.9%$ for target and OAR, respectively. The confidence limits were 3.65% and 4.39% for target and OAR, respectively. In case of VMAT the mean of relative error was $2.06{\pm}0.64%$ and $2.21{\pm}0.74%$ for target and OAR, respectively. The confidence limits were 4.09% and 3.04% for target and OAR, respectively. For the evaluation of relative dose, in case of IMRT, the average percentage of passing gamma criteria (3mm/3%) were $98.3{\pm}1.5%$ and the confidence limits were 3.78%. In case of VMAT, the average percentage were $98.2{\pm}1.1%$ and the confidence limits were 3.95%. We performed IMRT and VMAT patient specific QA using TG-119 based procedure, all analyzed results were satisfied with acceptance criteria based on TG-119. So, the IMRT and VMAT of our institution was confirmed the accuracy.

Detecting Phenology Using MODIS Vegetation Indices and Forest Type Map in South Korea (MODIS 식생지수와 임상도를 활용한 산림 식물계절 분석)

  • Lee, Bora;Kim, Eunsook;Lee, Jisun;Chung, Jae-Min;Lim, Jong-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.267-282
    • /
    • 2018
  • Despite the continuous development of phenology detection studies using satellite imagery, verification through comparison with the field observed data is insufficient. Especially, in the case of Korean forests patching in various forms, it is difficult to estimate the start of season (SOS) by using only satellite images due to resolution difference. To improve the accuracy of vegetation phenology estimation, this study reconstructed the large scaled forest type map (1:5,000) with MODIS pixel resolution and produced time series vegetation phenology curves from Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) derived from MODIS images. Based on the field observed data, extraction methods for the vegetation indices and SOS for Korean forests were compared and evaluated. We also analyzed the correlation between the composition ratio of forest types in each pixel and phenology extraction from the vegetation indices. When we compared NDVI and EVI with the field observed SOS data from the Korea National Arboretum, EVI was more accurate for Korean forests, and the first derivative was most suitable for extracting SOS in the phenology curve from the vegetation index. When the eight pixels neighboring the pixels of 7 broadleaved trees with field SOS data (center pixel) were compared to field SOS, the forest types of the best pixels with the highest correlation with the field data were deciduous forest by 67.9%, coniferous forest by 14.3%, and mixed forest by 7.7%, and the mean coefficient of determination ($R^2$) was 0.64. The average national SOS extracted from MODIS EVI were DOY 112.9 in 2014 at the earliest and DOY 129.1 in 2010 at the latest, which is about 0.16 days faster since 2003. In future research, it is necessary to expand the analysis of deciduous and mixed forests' SOS into the extraction of coniferous forest's SOS in order to understand the various climate and geomorphic factors. As such, comprehensive study should be carried out considering the diversity of forest ecosystems in Korea.

Development of International Genetic Evaluation Models for Dairy Cattle (홀스타인의 국제유전평가를 위한 모형개발에 관한 연구)

  • Cho, Kwang Hyun;Park, Byoungho;Choi, Jaekwan;Choi, Taejeong;Choy, Yunho;Lee, Seungsu;Cho, Chungil
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • This study was aimed to solve the problems of current national genetic evaluation systems in Korea and its development to pass the verification processes as required by International Bull Evaluation Service (Interbull). This will enable Korea to participate in international genetic evaluation program. A total of 1,416,589 test-day milk records with calving dates used in this study were collected by National Agricultural Cooperative Federation from 2001 to 2009. Parity was limited up to fifth calving and milk production records were adjusted to cumulative 305 day lactation. The pedigree consisted of 2,279,741 animals where 2,467 bulls had 535,409 parents. A newly developed multiple trait model was used in calculation of breeding values for milk yield, milk fat, and protein yield. Data were edited with SAS (version 9.2) and R programs, and genetic parameters were estimated using VCE 6.0. Results showed a continuous increase in genetic potentials, in general, and no remarkable differences were found between performances by parity. Except fat yield, potentials in milk yield and protein yield were well calculated. We found an increased number of daughters per each top ranked 1,000 bulls in recent years of calf births compared to the cases of previous evaluations. Of the bulls ranked top 100 by our new models (multiple-trait models) we found that increased numbers of bulls were included. Of twenty eight bulls born in 2006, twenty bulls born in 2007 and eight bulls born in 2008 that were listed by new models, only 23, 12, and 2 bulls born in respective years were represented on top 100 by old single-trait models. Re-ranking of the daughters or sires by multiple-trait models suggest that this new multiple trait approach should be used for dairy cattle genetic evaluation and seed-stock selection in the future to increase the accuracy of multiple trait selection. Breeding values for these traits should also be calculated by new method for international genetic evaluation.

Analysis of Integrated Oceanic Current Maps in Science and Earth Science Textbooks of Secondary School Based on 2015 Revised Curriculum (2015 개정 교육과정 기반 중등학교 과학 및 지구과학 교과서의 통합 해류도 분석)

  • Park, Kyung-Ae;Lee, Jae Yon;Park, Jae-Jin;Lee, Eunil;Byun, Do-Seong;Kang, Boon-Soon;Jeong, Kwang-Yeong
    • Journal of the Korean earth science society
    • /
    • v.41 no.3
    • /
    • pp.248-260
    • /
    • 2020
  • Oceanic current maps introduced in science and earth science textbooks can offer a valuable opportunity for students to learn about rapid climate change and the role of currents associated with the global energy balance problem. Previously developed oceanic current maps in middle and high school textbooks under the 2007 and 2009-revised national curriculum contained various errors in terms of scientific accuracy. To resolve these problems, marine experts have constructed a unified oceanographic map of the oceans surrounding the Korean Peninsula. Since 2010, this process has involved a continuous, long-term consultation procedure. By extensively gathering opinions and through verification process, a representative and scientific oceanic current map was eventually constructed. Based on this, the educational oceanic current maps, targeting the comprehension of middle and high school students, were developed. These maps were incorporated into middle and high school textbooks in accordance with the revised 2015 curriculum. In this study, we analyzed the oceanic current maps of five middle school science textbooks and six earth science textbooks that were published in high school in 2019. Although all the oceanic current maps in the textbooks were unified based on the proposed scientific oceanic current maps, there were problems such as the omission of certain oceanic currents or the use of a combination of dotted and solid lines. Moreover, several textbooks were found to be using incorrect names for oceanic currents. This study suggests that oceanic current maps, produced by integrating scientific knowledge, should be visually accurate and utilized appropriately to avoid students' misconception.

Analysis and verification of vitamin B12 in animal foods for update of national standard food composition table (국가표준식품성분표 개정을 위한 동물성 식품 비타민 B12 분석 및 검증)

  • Jeong, Yon Na;Park, Su-Jin;Lee, Sang Hoon;Choi, Youngmin;Choi, Kap Seong;Chun, Jiyeon
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.317-324
    • /
    • 2020
  • In order to create the national food nutrient database, a total of 41 animal foods (ham, seafood, edible insects and eggs) were analyzed for their vitamin B12 content and the applied immunoaffinity-HPLC was verified. Ham vitamin B12 contents were 0.30-0.65 ㎍/100 g. Seafood showed relatively high vitamin B12 level, where the values of fermented clam were the highest (26.80 ㎍/100 g) followed by fermented pollack roe. Vitamin B12 was not detected in silkworm pupae and beetles, while relatively high levels were found in the two-spotted cricket imago (6.70 ㎍/100 g). Chicken and quail egg yolk had roughly 100- and 30-times higher vitamin B12 levels as compared to their egg white. Vitamin B12 contents in quail and chicken eggs were significantly enhanced by boiling (p<0.05). Results based on accuracy (97-102% recovery) and precision (<5% RSD) indicate that this study provides reliable vitamin B12 information on animal foods consumed in Korea.

Reliability Verification of FLUKA Transport Code for Double Layered X-ray Protective Sheet Design (이중 구조의 X선 차폐시트 설계를 위한 FLUKA 수송코드의 신뢰성 검증)

  • Kang, Sang Sik;Heo, Seung Wook;Choi, Il Hong;Jun, Jae Hoon;Yang, Sung Woo;Kim, Kyo Tae;Heo, Ye Ji;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.547-553
    • /
    • 2017
  • In the current medical field, lead is widely used as a radiation shield. However, the lead weight is very heavy, so wearing protective clothing such as apron is difficult to wear for long periods of time and there is a problem with the danger of lethal toxicity in humans. Recently, many studies have been conducted to develop substitute materials of lead to resolve these problems. As a substitute materials for lead, barium(Ba) and iodine(I) have excellent shielding ability. But, It has characteristics emitting characteristic X-rays from the energy area near 30 keV. For patients or radiation workers, shielding materials is often made into contact with the human body. Therefore, the characteristic X-rays generated by the shielding material are directly exposured in the human body, which increases the risk of increasing radiation absorbed dose. In this study, we have developed the FLUKA transport code, one of the most suitable elements of radiation transport codes, to remove the characteristic X-rays generated by barium or iodine. We have verified the reliability of the shielding fraction of the structure of the structure shielding by comparing with the MCPDX simulations conducted as a prior study. Using the MCNPX and FLUKA, the double layer shielding structures with the various thickness combination consisting of barium sulphate ($BaSO_4$) and bismuth oxide($Bi_2O_3$) are designed. The accuracy of the type shown in IEC 61331-1 was geometrically identical to the simulation. In addition, the transmission spectrum and absorbed dose of the shielding material for the successive x-rays of 120 kVp spectra were compared with lead. In results, $0.3mm-BaSO_4/0.3mm-Bi_2O_3$ and $0.1mm-BaSO_4/0.5mm-Bi_2O_3$ structures have been absorbed in both 33 keV and 37 keV characteristic X-rays. In addition, for high-energy X-rays greater than 90 keV, the shielding efficiency was shown close to lead. Also, the transport code of the FLUKA's photon transport code was showed cut-off on low-energy X-rays(below 33keV) and is limited to computerized X-rays of the low-energy X-rays. But, In high-energy areas above 40 keV, the relative error with MCNPX was found to be highly reliable within 6 %.