• Title/Summary/Keyword: Accuracy Rate

Search Result 3,403, Processing Time 0.028 seconds

Improved Decision Tree-Based State Tying In Continuous Speech Recognition System (연속 음성 인식 시스템을 위한 향상된 결정 트리 기반 상태 공유)

  • ;Xintian Wu;Chaojun Liu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.49-56
    • /
    • 1999
  • In many continuous speech recognition systems based on HMMs, decision tree-based state tying has been used for not only improving the robustness and accuracy of context dependent acoustic modeling but also synthesizing unseen models. To construct the phonetic decision tree, standard method performs one-level pruning using just single Gaussian triphone models. In this paper, two novel approaches, two-level decision tree and multi-mixture decision tree, are proposed to get better performance through more accurate acoustic modeling. Two-level decision tree performs two level pruning for the state tying and the mixture weight tying. Using the second level, the tied states can have different mixture weights based on the similarities in their phonetic contexts. In the second approach, phonetic decision tree continues to be updated with training sequence, mixture splitting and re-estimation. Multi-mixture Gaussian as well as single Gaussian models are used to construct the multi-mixture decision tree. Continuous speech recognition experiment using these approaches on BN-96 and WSJ5k data showed a reduction in word error rate comparing to the standard decision tree based system given similar number of tied states.

  • PDF

Development of Kinetic Models Describing Kinetic Behavior of Bacillus cereus and Staphylococcus aureus in Milk

  • Kim, Hyoun Wook;Lee, Sun-Ah;Yoon, Yohan;Paik, Hyun-Dong;Ham, Jun-Sang;Han, Sang-Ha;Seo, Kuk-Hwan;Jang, Aera;Park, Bum-Young;Oh, Mi-Hwa
    • Food Science of Animal Resources
    • /
    • v.33 no.2
    • /
    • pp.155-161
    • /
    • 2013
  • This study developed predictive models to evaluate the kinetic behaviors of Bacillus cereus and Staphylococcus aureus in milk during storage at various temperatures. B. cereus and S. aureus (3 Log CFU/mL) were inoculated into milk and stored at $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$, as well as $5^{\circ}C$, $15^{\circ}C$, $25^{\circ}C$, and $35^{\circ}C$, respectively, while bacterial populations were enumerated. The growth data were fitted to the modified Gompertz model to estimate kinetic parameters, including the maximum specific growth rate (${\mu}_{max}$; Log CFU/[$mL{\cdot}h$]), lag phase duration (LPD; h), lower asymptote ($N_0$; Log CFU/mL), and upper asymptote ($N_{max}$; Log CFU/mL). To describe the kinetic behavior of B. cereus and S. aureus, the parameters were fitted to the square root model as a function of storage temperature. Finally, the developed models were validated with the observed data, and Bias (B) and Accuracy (A) factors were calculated. Cell counts of both bacteria increased with storage time. Primary modeling yielded the following parameters; ${\mu}_{max}$: 0.14-0.75 and 0.06-0.51 Log CFU/mL/h; LPD: 1.78-14.03 and 0.00-1.44 h, $N_0$: 3.10-3.37 and 2.09-3.07 Log CFU/mL, and $N_{max}$: 7.59-8.87 and 8.60-9.32 Log CFU/mL for B. cereus and S. aureus, respectively. Secondary modeling yielded a determination of coefficient ($R^2$) of 0.926.0.996. B factors were 1.20 and 0.94, and A factors were 1.16 and 1.08 for B. cereus and S. aureus, respectively. Thus, the mathematical models developed here should be useful in describing the kinetic behaviors of B. cereus and S. aureus in milk during storage.

Reduced-scale Model Experiment for Examination of Natural Vent and Fire Curtain Effects in Fire of Theater Stage (공연장 무대부 화재 시 자연배출구 및 방화막 영향 검토를 위한 축소모형 실험)

  • Baek, Seon A;Yang, Ji Hyun;Jeong, Chan Seok;Lee, Chi Young;Kim, Duncan
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.41-49
    • /
    • 2019
  • In the present experimental study, based on a real-scale theater, a 1/14 reduced-scale model was constructed, and the effects of natural vent and fire curtain in fire of a theater stage were investigated. The case without fire curtain under the opened natural vent showed lower temperatures in the stage, whereas the case with fire curtain under the opened natural vent showed lower temperatures in the auditorium. On the other hand, through analyzing the starting time of the temperature rise at the point near the proscenium opening in the auditorium, it was found that the opened natural vent condition can delay the starting time of smoke spread from the stage to the auditorium and suppress the temperature rise in the auditorium. Under the present experimental conditions, the fire curtain installation did not affect significantly the velocity and mass flow rate of the outflow through the natural vent of the stage, which might be due to openings in the stage. The present results can be used to examine the effects of natural vent and fire curtain in a real-scale fire of a theater and to check the accuracy of the numerical simulation code.

Evaluation on Extraction Conditions and HPLC Analysis Method for Bioactive Compounds of Astragali Radix (황기의 추출조건 및 유효성분의 HPLC 분석법 평가)

  • Kim, Geum Soog;Lee, Dae Young;Lee, Seung Eun;Noh, Hyung Jun;Choi, Je Hun;Park, Chun Geun;Choi, Soo Im;Hong, Seung Jae;Kim, Seung Yu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.6
    • /
    • pp.486-492
    • /
    • 2013
  • This study has been conducted to establish the optimal extraction process and HPLC analysis method for the determination of marker compounds as a part of the materials standardization for the development of health functional food materials from Astragali radix. Five extraction conditions including the shaking extraction at room temperature and the reflux extraction at $85^{\circ}C$ with 30%, 50% and 95% ethanol were evaluated. Reflux extraction with 50% ethanol showed the highest extraction yield as $27.27{\pm}2.27%$, while the extraction under reflux with 95% ethanol showed significantly the lowest yield of $10.55{\pm}0.24%$. The quantitative determination methods of calycosin-7-O-${\beta}$-D-glucoside and calycosin as marker compounds of Astragali radix extracts were optimized by HPLC analysis using a Thermo Hypersil column ($4.6{\times}250mm$, $5{\mu}m$) with the gradient elution of water and acetonitrile as the mobile phase at the flow rate of $0.8mLmin^{-1}$ and a detection wavelength of 230nm. The HPLC/UV method was applied successfully to the quantification of two marker compounds in Astragali radix extracts after validation of the method with the linearity, accuracy and precision. The contents of calycosin-7-O-${\beta}$-D-glucoside and calycosin in 50% ethanol extracts by reflux extraction were significantly higher as $1,700.3{\pm}30.4$ and $443.6{\pm}8.4{\mu}g-1$, respectively, comparing with those in other extracts. The results indicate that the reflux extraction with 50% ethanol at $85^{\circ}C$ is optimal for the extraction of Astragali radix, and the established HPLC method are very useful for the evaluation of marker compounds in Astragali radix extracts to develop the health functional material from Astragali radix.

Direct detection of hemophilia B F9 gene mutation using multiplex PCR and conformation sensitive gel electrophoresis (Multiplex PCR과 Conformation Sensitive Gel Electrophoresis를 이용한 혈우병B F9 유전자 돌연변이 직접 진단법)

  • Yoo, Ki Young;Kim, Hee Jin;Lee, Kwang Chul
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.3
    • /
    • pp.397-407
    • /
    • 2010
  • Purpose : The F9 gene is known to be the causative gene for hemophilia B, but unfortunately the detection rate for restriction fragment length polymorphism-based linkage analysis is only 55.6%. Direct DNA sequencing can detect 98% of mutations, but this alternative procedure is very costly. Here, we conducted multiplex polymerase chain reactions (PCRs) and conformation sensitive gel electrophoresis (CSGE) to perform a screened DNA sequencing for the F9 gene, and we compared the results with direct sequencing in terms of accuracy, cost, simplicity, and time consumption. Methods : A total of 27 unrelated hemophilia B patients were enrolled. Direct DNA sequencing was performed for 27 patients by a separate institute, and multiplex PCR-CSGE screened sequencing was done in our laboratory. Results of the direct DNA sequencing were used as a reference, to which the results of the multiplex PCR-CSGE screened sequencing were compared. For the patients whose mutation was not detected by the 2 methods, multiplex ligation-dependent probe amplification (MLPA) was conducted. Results : With direct sequencing, the mutations could be identified from 26 patients (96.3%), whereas for multiplex PCRCSGE screened sequencing, the mutations could be detected in 23 (85.2%). One patient's mutation was identified by MLPA. A total of 21 different mutations were found among the 27 patients. Conclusion : Multiplex PCR-CSGE screened DNA sequencing detected 88.9% of mutations and reduced costs by 55.7% compared with direct DNA sequencing. However, it was more labor-intensive and time-consuming.

A Study on the Development of Forest Fire Occurrence Probability Model using Canadian Forest Fire Weather Index -Occurrence of Forest Fire in Kangwon Province- (캐나다 산불 기상지수를 이용한 산불발생확률모형 개발 -강원도 지역 산불발생을 중심으로-)

  • Park, Houng-Sek;Lee, Si-Young;Chae, Hee-Mun;Lee, Woo-Kyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.95-100
    • /
    • 2009
  • Fine fuel moisture code (FFMC), a main component of forest fire weather index(FWI) in the Canadian forest fire danger rating system(CFFDRS), indicated a probability of ignition through expecting a dryness of fine fuels. According to this code, a rising of temperature and wind velocity, a decreasing of precipitation and decline of humidity in a weather condition showed a rising of a danger rate for the forest fire. In this study, we analyzed a weather condition during 5 years in Kangwon province, calculated a FFMC and examined an application of FFMC. Very low humidity and little precipitation was a characteristic during spring and fall fire season in Kangwon province. 75% of forest fires during 5 years occurred in this season and especially 90% of forest fire during fire season occurred in spring. For developing of the prediction model for a forest fire occurrence probability, we used a logistic regression function with forest fire occurrence data and classified mean FFMC during 10 days. Accuracy of a developed model was 63.6%. To improve this model, we need to deal with more meteorological data during overall seasons and to associate a meteorological condition with a forest fire occurrence with more research results.

Real Time Environmental Classification Algorithm Using Neural Network for Hearing Aids (인공 신경망을 이용한 보청기용 실시간 환경분류 알고리즘)

  • Seo, Sangwan;Yook, Sunhyun;Nam, Kyoung Won;Han, Jonghee;Kwon, See Youn;Hong, Sung Hwa;Kim, Dongwook;Lee, Sangmin;Jang, Dong Pyo;Kim, In Young
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.8-13
    • /
    • 2013
  • Persons with sensorineural hearing impairment have troubles in hearing at noisy environments because of their deteriorated hearing levels and low-spectral resolution of the auditory system and therefore, they use hearing aids to compensate weakened hearing abilities. Various algorithms for hearing loss compensation and environmental noise reduction have been implemented in the hearing aid; however, the performance of these algorithms vary in accordance with external sound situations and therefore, it is important to tune the operation of the hearing aid appropriately in accordance with a wide variety of sound situations. In this study, a sound classification algorithm that can be applied to the hearing aid was suggested. The proposed algorithm can classify the different types of speech situations into four categories: 1) speech-only, 2) noise-only, 3) speech-in-noise, and 4) music-only. The proposed classification algorithm consists of two sub-parts: a feature extractor and a speech situation classifier. The former extracts seven characteristic features - short time energy and zero crossing rate in the time domain; spectral centroid, spectral flux and spectral roll-off in the frequency domain; mel frequency cepstral coefficients and power values of mel bands - from the recent input signals of two microphones, and the latter classifies the current speech situation. The experimental results showed that the proposed algorithm could classify the kinds of speech situations with an accuracy of over 94.4%. Based on these results, we believe that the proposed algorithm can be applied to the hearing aid to improve speech intelligibility in noisy environments.

Simultaneous Determination of Pesticides in Water Using a GC/MS Coupled with Micro Extraction by Packed Sorbent (MEPS-GC/MS를 이용한 농약류 동시 수질분석)

  • Lee, Ki-chang;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.262-268
    • /
    • 2015
  • This study established an analytical method to simultaneously determine six organophosphorous pesticides [methyldemetone-S, diazinon, fenitrothion, parathion, phentoate, and O-ethyl O-(4-nitrophenyl) phenylphosphonothioate (EPN)] and carbaryl in water using a gas chromatography/mass spectrometry (GC/MS) system coupled with on-line micro extraction by packed sorbent (MEPS) and programmed temperature vaporizer (PTV) injector. Polystyrene divinylbenzene (PDVB) was used as a sorbent of MEPS. The effects of elution solvents, pH, elution volume and draw-eject cycles of samples on sample pretreatment process were investigated. Also, quality assurance and quality control (QA/QC) and the recovery of the pesticides in environmental samples were evaluated. The elution was performed using $30{\mu}L$ of a mixed solvent (acetone : dichloromethane = 80 : 20 (v/v)). Sample pretreatment processes were optimized with seven cycles of draw-eject of sample (1 mL) spiking an internal standard and sulfuric acid. At lower pH, the analytical sensitivity of diazinon decreased, but that of carbaryl increased. The method detection limit and the limit of quantification for this method were 0.02~0.18 and $0.08{\sim}0.59{\mu}g/L$, respectively. The method precision and accuracy were 1.5~11.5% and 83.3~129.8%, respectively, at concentrations of $0.5{\sim}5.0{\mu}g/L$. The recovery rates for all the pesticides except carbaryl in various environmental samples ranged 75.7~129.3%. The recovery rate of carbaryl in effluent sample was over 200% whereas carbaryl in drinking water, groundwater, and river water were in the acceptable range.

Lane Detection in Complex Environment Using Grid-Based Morphology and Directional Edge-link Pairs (복잡한 환경에서 Grid기반 모폴리지와 방향성 에지 연결을 이용한 차선 검출 기법)

  • Lin, Qing;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.786-792
    • /
    • 2010
  • This paper presents a real-time lane detection method which can accurately find the lane-mark boundaries in complex road environment. Unlike many existing methods that pay much attention on the post-processing stage to fit lane-mark position among a great deal of outliers, the proposed method aims at removing those outliers as much as possible at feature extraction stage, so that the searching space at post-processing stage can be greatly reduced. To achieve this goal, a grid-based morphology operation is firstly used to generate the regions of interest (ROI) dynamically, in which a directional edge-linking algorithm with directional edge-gap closing is proposed to link edge-pixels into edge-links which lie in the valid directions, these directional edge-links are then grouped into pairs by checking the valid lane-mark width at certain height of the image. Finally, lane-mark colors are checked inside edge-link pairs in the YUV color space, and lane-mark types are estimated employing a Bayesian probability model. Experimental results show that the proposed method is effective in identifying lane-mark edges among heavy clutter edges in complex road environment, and the whole algorithm can achieve an accuracy rate around 92% at an average speed of 10ms/frame at the image size of $320{\times}240$.

Validation of Analytical Method of Marker Compounds in Extract of Pear Pomace as a Functional Health Ingredient (건강기능식품 원료로서 나주 배박 추출물의 지표성분 분석법 벨리데이션)

  • Cho, Eun-Jung;Bang, Mi-Ae;Cho, Seung-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1682-1686
    • /
    • 2015
  • This study was conducted to establish an HPLC analysis method for determination of marker compounds as part of materials standardization for development of health functional food materials from pear pomace. The quantitative determination method of caffeic acid and chlorogenic acid as marker compounds of pear pomace extract (PPE) was optimized by HPLC analysis using a C18 column ($5{\times}250mm$, $5{\mu}m$) with a 0.2% elution gradient of acetic acid and methanol as the mobile phase at a flow rate of 0.8 mL/min and detection wavelength of 330 nm. The HPLC/UV method was applied successfully to the quantification of marker compounds in PPE after validation of the method with linearity, accuracy, and precision. The method showed high linearity of the calibration curve with a coefficient of correlation ($R^2$) of 0.9999, and limit of detection and limit of quantification were $1.14{\mu}g/mL$ (caffeic acid) and $1.61{\mu}g/mL$ (chlorogenic acid) as well as $4.9{\mu}g/mL$ (caffeic acid) and $4.9{\mu}g/mL$ (chlorogenic acid), respectively. Relative standard deviation values from intra- and inter-day precision were less than 3.1% (caffeic acid) and 4.0% (chlorogenic acid), respectively. Recovery rates of caffeic acid and chlorogenic acid at 12.5, 25, and $50{\mu}g/mL$ were 93.66~106.32% and 97.33~105.68%, respectively. An optimized method for extraction of caffeic acid and chlorogenic acid in PPE was established through diverse extraction conditions, and the validation indicated that the method is very useful for evaluation of marker compounds in PPE to develop a health functional food material.