• Title/Summary/Keyword: Accretion disk

Search Result 133, Processing Time 0.025 seconds

SELF-SIMILAR SOLUTIONS OF ADVECTION-DOMINATED ACCRETION FLOWS REVISITED

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.139-146
    • /
    • 2005
  • A model of advection-dominated accretion flows has been highlighted in the last decade. Most of calculations are based on self-similar solutions of equations governing the accreting flows. We revisit self-similar solutions of the simplest form of advection-dominated accretion flows. We explore the parameter space thoroughly and seek another category of self-similar solutions. In this study we allow the parameter f less than zero, which denotes the fraction of energy transported through advection. We have found followings: 1. For f > 0, in real ADAF solutions the ratio of specific heats ${\gamma}$ satisfies 1 < ${\gamma}$ < 5/3 for O ${\leq}$ f ${\leq}$ 1. On the other hands, in wind solutions a rotating disk does not exist. 2. For f < 0, in real ADAF solutions with ${\epsilon}$ greater than zero ${\gamma}$ requires rather exotic range, that is, ${\gamma}$ < 1 or ${\gamma}$ > 5/3. When -5/2 < ${\epsilon}$' < 0, however, allowable ${\gamma}$ can be found in ${\gamma}$ < 5/3, in which case 4{\Omega}_0$,_ is imaginary. 3. For a negative $u_0$,+ with f > 0, solutions are only allowed with exotic ${\gamma}$, that is, 1 < ${\gamma}$ or ${\gamma}$ > (5f/2-5/3)/(5f/2-1)when O < f < 2/5, (5f/2-5/3)/(5f/2-1) < ${\gamma}$ < 1 when f > 2/5. Since ${\epsilon}$' is negative, 4{\Omega}_0$,+ is again an imaginary quantity. For a negative $u_0$,+ with f < 0, ${\gamma}$ is allowed in 1 < 7 < (5|f|/2 + 5/3)/(5|f|/2 + 1). We briefly discuss physical implications of what we have found.

MAGNETIC FIELDS IN STARS AND DISKS

  • VISHNIAC ETHAN T.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.201-204
    • /
    • 1996
  • Magnetic fields are thought to playa role in a wide variety of important astrophysical processes, from angular momentum transport and jet formation in accretion disks to corona formation in stars. Unfortunately, the dynamics of magnetic fields in astrophysical plasmas are extremely complicated, and the success of current theoretical models and computer simulations seems to be inversely correlated with the amount of observational detail available to us. Here I will discuss some of the more striking conflicts between numerical simulations and observations, and present an explanation for them based on an important dynamical process which is not adequately modeled in current numerical simulations. These processes will lead to the formation of flux tubes in stars and accretion disks, in accordance with observations. I will discuss some of the implications of flux tube formation for stellar and accretion disk dynamos.

  • PDF

The ice features of Very Low Luminosity Objects (VeLLOs): Unveiling their episodic accretion history through the spectroscopic observation of AKARI IRC

  • Kim, Jaeyeong;Lee, Jeong-Eun;Aikawa, Yuri;Kim, Il-Seok;Lee, Ho-Gyu;Jeong, Woong-Seob;Noble, Jennifer A.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.45.3-46
    • /
    • 2018
  • Although mass accretion from the disk to the central protostar is a key process of low mass star formation, the accretion mechanism is still poorly understood. To investigate "episodic accretion", which has been suggested as an accretion mechanism in low mass star formation, we have carried out near-infrared spectroscopic observations of three very low-luminosity objects (VeLLOs) and one background source, using InfraRed Camera onboard the AKARI space telescope. The ice absorption features of $H_2O$, $CO_2$, and CO were detected around the wavelengths of 3.0, 4.26, and $4.67{\mu}m$, respectively. In addition, we revealed the XCN ice feature, which is attributed to high energy UV photons produced by the episodic burst accretion. The comparisons of the ice abundances of our targets with those of other YSOs observed previously with AKARI IRC imply that the three VeLLOs had experienced burst accretions although they are now in a very quiescent phase.

  • PDF

UNDERSTANDING OF DISK STRUCTURE DURING THE COLLAPSE OF THE VISCOUS DISK USING SELF-SIMILAR AND NUMERICAL SOLUTIONS (상사해(相似解) 및 수치해를 이용한 점성원반 붕괴시 원반 구조 이해)

  • Yoo, Kye-Hwa
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.37-42
    • /
    • 2005
  • The problem for the collapse of isothermal and rotational self-gravitational viscous disk is considered. We derive self-similar solutions for the cases in the inner and outer regions of the self-gravitational viscous disk. We show that surface density depends on ${\sigma}_0/r$ in the outer region of the disk using a slow accretion approximation. The ratio of a modified viscous parameter in the outer region of the disk to that in the inner region is 0.042. We resorted to numerical solutions of governing equations of the self-gravitational disk to find out profiles of ${\sigma}$, u and ${\upsilon}$ in terms of x. Their profiles were rapidly changed around the innermost region of the self-gravitational disk. It indicates that a new object was formed in the most inner region of the disk.

The narrow emission-line properties of radio-loud AGNs in the SDSS archive

  • Son, Donghoon;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.74.4-75
    • /
    • 2015
  • We investigate the narrow emission-line ratios of 64 radio-loud (log $L_{1.4GHz}$ > 40) AGNs available in the SDSS archive, in order to examine whether there is a systematic difference in the accretion disk condition of radio-loud AGNs compared to radio-quiet AGNs and compact young radio-loud AGNs. The fluxes of narrow-emission lines, [O II], [Ne III], [O III], [O I], [Ar III], are measured for diagnostics. Based on the [O I]/[O III] and [Ar III]/[O III] ratios with photoionization models, we constrain the states of the accretion disk. We will present the results of the emission-line diagnostics.

  • PDF

SPECTRAL FEATURES OF THE SYMBIOTIC VARIABLE STAR CH CYGNI IN 2005 - 2006

  • Yoo, Kye-Hwa;Yoon, Tae-Seog
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.4
    • /
    • pp.93-103
    • /
    • 2009
  • This article reports the spectral behavior of CH Cygni, using data obtained in October 2005 and June 2006. In these epochs, CH Cygni showed emission lines of H I, Fe II, [Fe II], [O III], [N II], [Ne III] and [S II]. Many of these lines were more enhanced since 2004. The underlying M-type spectrum was removed to get the intrinsic emission profile, and the resulting profiles were deconvoluted into several Gaussian components. Also, the radial velocities for all the lines that appeared in these spectra of CH Cygni were measured. The resultant lines were compared with each other and with those obtained in 2004; the findings are explained in terms of an accretion disk and jets.

Outburst signatures of Class I source, IRAS 16316-1540

  • Yoon, Sung-Yong;Lee, Jeong-Eun;Lee, Seokho;Park, Sunkyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.55.4-55.4
    • /
    • 2016
  • We observed 10 Class I sources as part of the IGRINS (Immersion GRating INfrared Spectroscoph) Legacy Program, "IGRINS Survey of Protoplanetary Disks (PI: Jeong-Eun Lee)". Unlike other Class I sources, IRAS 16316-1540 shows broad absorption features in the near-infrared spectra (H and K bands). The broadened absorption features have been detected toward FU Orionis-type objects. Boxy or double-peaked absorption profiles can be produced by a Keplerian disk that has the hot mid-plane heated by a burst mass accretion. We could fit the broad absorption features of IRAS 16316-1540 with a K5 V template stellar spectrum convolved with a disk rotation profile of 45 km s-1. Therefore, rotationally broadened absorption features detected in this Class I source suggest that the episodic accretion process occurs from the early stage of star formation.

  • PDF