• Title/Summary/Keyword: Acclimation response ratio

Search Result 3, Processing Time 0.017 seconds

Acclimation temperature influences the critical thermal maxima (CTmax) of red-spotted grouper

  • Rahman, Md Mofizur;Lee, Young-Don;Baek, Hea Ja
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.7
    • /
    • pp.235-242
    • /
    • 2021
  • The present study investigated the critical thermal maxima (CTmax) of red-spotted grouper, Epinephelus akaara under different acclimation temperatures (Tacc). Fish were acclimated at 24℃, 28℃, and 32℃ water temperature for 2 weeks. Water temperature was increased at a rate of 1℃/h and CTmax level was measured following the critical thermal methodology (Paladino et al., 1980). The results showed that CTmax values of E. akaara were 35.61℃, 36.83℃, and 37.65℃ for fish acclimated at 24℃, 28℃, and 32℃, respectively. The acclimation response ratio (ARR) was 0.26. The CTmax values were significantly correlated with body size. Collectively, it is said that the CTmax value of red-spotted grouper can be affected by different adaptation temperature (24℃, 28℃, and 32℃) and the fish acclimated to a higher temperature has a higher CTmax level. Besides, the CTmax value of 35.61℃-37.65℃ indicating the upper thermal tolerance limit for E. akaara under different Tacc (24℃, 28℃, and 32℃). Understanding the thermal tolerance of E. akaara is of ecological importance in the conservation of this species.

Changes in Blood Cell Morphology and Number of Red Spotted Grouper, Epinephelus akaara in Response to Thermal Stress

  • Rahman, Md Mofizur;Kim, Hyung Bae;Baek, Hea Ja
    • Development and Reproduction
    • /
    • v.23 no.2
    • /
    • pp.139-148
    • /
    • 2019
  • Rising of water temperature due to global warming is a great concern to aquaculturists and fishery biologists. Hence, the present study aimed to investigate the effects of high water temperature on juvenile red spotted grouper, Epinephelus akaara based on the evaluation of stress responses in blood. E. akaara juveniles were exposed to different thermal conditions ($25^{\circ}C$, $28^{\circ}C$, $31^{\circ}C$, and $34^{\circ}C$) for 6 weeks following 2 weeks of acclimation at $25^{\circ}C$. Blood cell morphology and number were examined at three sampling points (2, 7, and 42 days) from a total of 180 fish. Major erythrocytic cellular abnormalities (ECA) observed in blood smears of thermally stressed groups ($31^{\circ}C$ and $34^{\circ}C$) after 6 weeks were echinocytes, teardrop-like cells, swollen cells and vacuolated cells. Both red and white blood cell number (RBC and WBC) were significantly (p<0.05) elevated in $31^{\circ}C$ and $34^{\circ}C$ group after 6 weeks thermal exposure. Differential leucocytes number showed significant increases in neutrophil (N) and decreases in lymphocytes (L) in the highest temperature ($34^{\circ}C$). Different N:L ratio was observed at different thermal conditions which can be used as a reliable alternative to measure stress response. Taken together, these results suggest that higher temperature ($31^{\circ}C$ and $34^{\circ}C$) can interfere the immune system of red spotted grouper by altering the blood cell morphology and number.

Survival and Physiological Responses of the Tunicate Halocynthia roretzi to Salinity Changes (염분변화에 따른 멍게 Halocynthia roretzi의 생존과 생리적 반응)

  • Shin, Yun-Kyung;Choi, Nack-Joong;Hur, Young-Baek;Han, Hyoung-Kyun;Park, Jeong-Heum;Kim, Yoon
    • Journal of Aquaculture
    • /
    • v.20 no.4
    • /
    • pp.226-231
    • /
    • 2007
  • We investigated survival and osmolarity, oxygen consumption, amonia extetion and filtration rates associated with physiological responses of the tunicate Halocynthia roretzi salinity changes. Acclimation times for osmolatity in different salinities took $20{\sim}26$ hours in 60% SW (19.8 psu) and $20{\sim}25$ hours in 80% SW (26.4 psu), while their times took $7{\sim}8$ hours in 110% SW (36.3 psu). Accordingly, acclimation times for high salinities were faster than those for low salinities. Survival (%) was more than 80% at salinity over 26.4 psu, and 6 $days-LS_{50}$ was 25.4 psu. physiological responses such as oxygen consumption, amonia excretion and filtration rates of H. roretzi showed more clear reactions in the longer exposure period (four days after exposure) than that in the beginning of the exposure. To sum up the results, the tunicate might be stressed from the beginning of the exposure in low salinity.