Browse > Article

Survival and Physiological Responses of the Tunicate Halocynthia roretzi to Salinity Changes  

Shin, Yun-Kyung (South Sea Mariculture Research Center, NFRDI)
Choi, Nack-Joong (South Sea Mariculture Research Center, NFRDI)
Hur, Young-Baek (Aquaculture environment Research Center, NFRDI)
Han, Hyoung-Kyun (Aquaculture environment Research Center, NFRDI)
Park, Jeong-Heum (Aquaculture environment Research Center, NFRDI)
Kim, Yoon (Marine Ranching Development and Management Center)
Publication Information
Journal of Aquaculture / v.20, no.4, 2007 , pp. 226-231 More about this Journal
Abstract
We investigated survival and osmolarity, oxygen consumption, amonia extetion and filtration rates associated with physiological responses of the tunicate Halocynthia roretzi salinity changes. Acclimation times for osmolatity in different salinities took $20{\sim}26$ hours in 60% SW (19.8 psu) and $20{\sim}25$ hours in 80% SW (26.4 psu), while their times took $7{\sim}8$ hours in 110% SW (36.3 psu). Accordingly, acclimation times for high salinities were faster than those for low salinities. Survival (%) was more than 80% at salinity over 26.4 psu, and 6 $days-LS_{50}$ was 25.4 psu. physiological responses such as oxygen consumption, amonia excretion and filtration rates of H. roretzi showed more clear reactions in the longer exposure period (four days after exposure) than that in the beginning of the exposure. To sum up the results, the tunicate might be stressed from the beginning of the exposure in low salinity.
Keywords
Halocynthia roretzi; physiological response; salinity; O:N ratio;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Almada-villela, P.C., 1984. The effects of reduced salinity on the growth of small Mytilus edulis. J. Mar. Biol. Ass. U.K., 64, 171-182   DOI
2 Bohle, B., 1972. Effects of adaptation to reduced salinity on filtration activity and growth of mussels (Mytilus edulis). J. Exp. Mar. Biol. Ecol., 10, 41-49   DOI   ScienceOn
3 Finney, D.J., 1971. Probit Analysis. 3rd ed. London: Cambridge University press
4 Hand S.C. and W.B. Stickle. 1977. Effects of tidal fluctuations of salinity on pericardial fluid composition of the American Crassostrea virginica. Mar. Biol., 42, 259-271   DOI
5 Corner, E.D.S. and C.B. Cowey, 1968. Biochemical studies on the production of marine zooplankton. Biol. Bull., 43, 393-426
6 Sastry A.N. and S.L. Vargo, 1977. Variations in the physiological response of crustacean larvae to temperature. (in) F. J. Vernberg, A. Calabrese, F.P. Thurberg and W. B. Vernberg (Eds.), Physiological Response of Marine Biota to Pollutants. Academic Press, New York., pp. 410-424
7 Cole, H.A. and B.T. Hepper, 1954. The use of neutral red solution for the comparative study of filtration rate of Lamelli branchs. J. Cons Int. Explror. Mer., 20, 197-203   DOI
8 Widdows, J., 1985. The effects of fluctuating and abrupt changes in salinity on the performance of Mytilus edulis. (in) J. S. Gray and M. E. Christiansen, (Eds.), Marine Biology of Polar Regions and Effects of stress on marine organism. Wiley- Interscience, pp. 555-566
9 Robertson, J.D., 1954. The chemical composition of the blood of some aquatic chordates including members of the Tunicata, Cyclostomata, and Osteichthyes. J. Exp. Biol., 31, 424-442
10 Miller, M.A. and R.K. Packer, 1977. A structural and functional study of the role of the renal sac in ionic regulation in the tunicate Molgula manhattensis. Comp. Biochem. Physiol., 57A, 424-427
11 Goodbody, I., 1962. The biology of Ascidia nigra(Savigny) I. Survival and mortality in an adult population. Biol. Bull. (Woods Hole, Mass.), 122, pp. 299-305
12 Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr., 14, 799-801   DOI   ScienceOn
13 Linda L. S., 1984. Osmorgulatory capabilities of three macrosympatric stolidobranch ascidians, Stylela clava Herdman, S. plicata (Lesueur), and S, montereyensis(Dall). J. Exp. Mar. Biol. Ecol., 82, 117-129   DOI   ScienceOn
14 Pierce, S. K., 1971. A source of solute for volume regulation in marine mussels. Comp. Biochem. Physiol., 39A, 103-117
15 Shumway, S., 1977. The effects of fluxtuating salinity on the tissue water content of eight species of bivalve mollusks. J. Comp. Physiol., 116, 269-285   DOI
16 Henze, M., 1911. Untersuchungen ber das bult der Ascidien I. Mitteiung. Die vanadiumverbindung der Blutkrperchen. Hoppe-Seyler's Z. Physiol. Chem., 72, pp. 494-501   DOI
17 Markus, J.A. and C.C. Lambert, 1983. Urea and ammonia excretion by solitary ascidians. J. Exp. Mar. Biol. Ecol., 66, 1-10   DOI   ScienceOn
18 Oglesby, L.C., 1965. Water and chloride regulation in nerids. Comp. Biochem. Physiol., 14, 621-640   DOI   ScienceOn
19 Peter M. T. and B. A. Elizabeth, 1988. Osmoregulation in the intertidal gastropod Littorina littorea. J. Exp. Mar. Biol. Ecol., 122, 35-46   DOI   ScienceOn
20 Dybern, B. I., 1969. Distribution and ecology of the tunicate Ascidiella sacbra (Muller) in Scagerak-Kattegaat of the Baltic proper, Distribution and ecology. Limnologica, 7, pp. 27-36
21 Shin, Y.K. B.H. Kim, B.S. Oh, C.G. Jung, S.G. Sohn and J.S. Lee, 2006. Physiological responses of the ark shell Scapharca broughtonii (Bivalvia: Arcidae) to decreases in salinity. J. Fish. Sci. Technol. 9(4), 153-159   과학기술학회마을   DOI
22 Kobayashi, G., 1935. Chemical composition of the body fluid of an ascidian: Chelyosoma. Siboha Oka. Sci. Rep. Toboku, Univ. Series IV, 9, pp. 407-413
23 Navarro J.M. and C.M. Gonzalez, 1998. Physiological responses of the Chilean scallop Argopecten purpuratus to decreasing salinities. Aquaculture, 167, 315-327   DOI   ScienceOn
24 Mayzaud, P. 1973. Respiration and nitrogen excretion of zooplankton. II. Studies of the metabolic characteristics of starved animals. Mar. Biol., 21, 19-28   DOI
25 Bayne, B.L., D.R. Livingstone, M.N. Moore and J. Widdows, 1976. A cytochemical and biochemical index of stress in Mytilus edulis L. Mar. Poll. Bull. 7, 221-224
26 Widdows, J., 1978. Physiological indices of stress in Mytilus edulis. J. Mar. Biol. Ass. U. K., 58, 125-142   DOI