DOI QR코드

DOI QR Code

Acclimation temperature influences the critical thermal maxima (CTmax) of red-spotted grouper

  • Received : 2020.12.31
  • Accepted : 2021.06.12
  • Published : 2021.07.31

Abstract

The present study investigated the critical thermal maxima (CTmax) of red-spotted grouper, Epinephelus akaara under different acclimation temperatures (Tacc). Fish were acclimated at 24℃, 28℃, and 32℃ water temperature for 2 weeks. Water temperature was increased at a rate of 1℃/h and CTmax level was measured following the critical thermal methodology (Paladino et al., 1980). The results showed that CTmax values of E. akaara were 35.61℃, 36.83℃, and 37.65℃ for fish acclimated at 24℃, 28℃, and 32℃, respectively. The acclimation response ratio (ARR) was 0.26. The CTmax values were significantly correlated with body size. Collectively, it is said that the CTmax value of red-spotted grouper can be affected by different adaptation temperature (24℃, 28℃, and 32℃) and the fish acclimated to a higher temperature has a higher CTmax level. Besides, the CTmax value of 35.61℃-37.65℃ indicating the upper thermal tolerance limit for E. akaara under different Tacc (24℃, 28℃, and 32℃). Understanding the thermal tolerance of E. akaara is of ecological importance in the conservation of this species.

Keywords

Acknowledgement

This research was supported by a grant (213008-05-3-WT511) from Golden Seed Project, Korean Ministry of Agriculture, Food and Rural Affairs (MAFRA), Ministry of Oceans and Fisheries (MOF), Rural Development Administration (RDA), and Korea Forest Service (KFS).

References

  1. Akhtar MS, Pal AK, Sahu NP, Ciji A, Mahanta PC. Thermal tolerance, oxygen consumption and haemato-biochemical variables of Tor putitora juveniles acclimated to five temperatures. Fish Physiol Biochem. 2013;39:1387-98. https://doi.org/10.1007/s10695-013-9793-7
  2. Baker SC, Heidinger RC. Upper lethal temperature tolerance of fingerling black crappie. J Fish Biol. 1996;48:1123-9.
  3. Beitinger TJ, Lutterschmidt WI. Temperature: measures of thermal tolerance. In: Farrell AP, Stevens ED, Cech JJ, Richard JG, editors. Encyclopedia of fish physiology: from genome to environment. San Diego, CA: Academic Press; 2011. p.1695-702.
  4. Beitinger TL, Bennett WA, McCauley RW. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ Biol Fishes. 2000;58:237-75. https://doi.org/10.1023/A:1007676325825
  5. Bennett WA, Beitinger TL. Temperature tolerance of the sheepshead minnow, Cyprinodon variegatus. Copeia. 1997;1997:77-87. https://doi.org/10.2307/1447842
  6. Chatterjee N, Pal AK, Manush SM, Das T, Mukherjee SC. Thermal tolerance and oxygen consumption of Labeo rohita and Cyprinus carpio early fingerlings acclimated to three different temperatures. J Therm Biol. 2004;29:265-70. https://doi.org/10.1016/j.jtherbio.2004.05.001
  7. Cheng SY, Chen CS, Chen JC. Salinity and temperature tolerance of brown-marbled grouper Epinephelus fuscoguttatus. Fish Physiol Biochem. 2013;39:277-86. https://doi.org/10.1007/s10695-012-9698-x
  8. Claussen DL. Thermal acclimation in ambystomatid salamanders. Comp Biochem Physiol A Comp Physiol. 1977;58:333-40. https://doi.org/10.1016/0300-9629(77)90150-5
  9. Cowles RB, Bogert CM. A preliminary study of the thermal requirements of desert reptiles. Bull Am Mus Nat Hist. 1944;83:265-96.
  10. Currie RJ, Bennett WA, Beitinger TL. Critical thermal minima and maxima of three freshwater game-fish species acclimated to constant temperatures. Environ Biol Fishes. 1998;51:187-200. https://doi.org/10.1023/A:1007447417546
  11. Das T, Pal AK, Chakraborty SK, Manush SM, Chatterjee N, Mukherjee SC. Thermal tolerance and oxygen consumption of Indian Major Carps acclimated to four temperatures. J Therm Biol. 2004;29:157-63. https://doi.org/10.1016/j.jtherbio.2004.02.001
  12. Deslauriers D, Heironimus L, Chipps SR. Lethal thermal maxima for age-0 pallid and shovelnose sturgeon: implications for shallow water habitat restoration. River Res Appl. 2016;32:1872-8. https://doi.org/10.1002/rra.3022
  13. Diaz F, Sierra E, Re AD, Rodriguez L. Behavioural thermoregulation and critical thermal limits of Macrobrachium acanthurus (Wiegman). J Therm Biol. 2002;27:423-8. https://doi.org/10.1016/S0306-4565(02)00011-6
  14. Diaz Herrera F, Uribe SE, Ramirez LFB, Mora AG. Critical thermal maxima and minima of Macrobrachium rosenbergii (Decapoda: Palaemonidae). J Therm Biol. 1998;23:381-5. https://doi.org/10.1016/S0306-4565(98)00029-1
  15. He Y, Wu X, Zhu Y, Li H, Li X, Yang D. Effect of rearing temperature on growth and thermal tolerance of Schizothorax (Racoma) kozlovi larvae and juveniles. J Therm Biol. 2014;46:24-30. https://doi.org/10.1016/j.jtherbio.2014.09.009
  16. Lee JW, Baek HJ. Determination of optimal temperature(s) in juvenile red-spotted grouper Epinephelus akaara (Temminck & Schlegel) based on growth performance and stress responses. Aquacult Res. 2018;49:3228-33. https://doi.org/10.1111/are.13782
  17. Lutterschmidt WI, Hutchison VH. The critical thermal maximum: history and critique. Can J Zool. 1997;75:1561-74. https://doi.org/10.1139/z97-783
  18. Murchie KJ, Cooke SJ, Danylchuk AJ, Danylchuk SE, Goldberg TL, Suski CD, et al. Thermal biology of bonefish (Albula vulpes) in Bahamian coastal waters and tidal creeks: an integrated laboratory and field study. J Therm Biol. 2011;36:38-48. https://doi.org/10.1016/j.jtherbio.2010.10.005
  19. Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, et al. The toxicology of climate change: environmental contaminants in a warming world. Environ Int. 2009;35:971-86. https://doi.org/10.1016/j.envint.2009.02.006
  20. Paladino FV, Spotila JR, Schubauer JP, Kowalski KT. The critical thermal maximum: a technique used to elucidate physiological stress and adaptation in fish. Rev Can Biol. 1980;39:115-22.
  21. Sadovy de Mitcheson Y, Craig MT, Bertoncini AA, Carpenter KE, Cheung WWL, Choat JH, et al. Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery. Fish Fish. 2013;14:119-36. https://doi.org/10.1111/j.1467-2979.2011.00455.x
  22. Sarma K, Pal AK, Ayyappan S, Das T, Manush SM, Debnath D, et al. Acclimation of Anabas testudineus (Bloch) to three test temperatures influences thermal tolerance and oxygen consumption. Fish Physiol Biochem. 2010;36:85-90. https://doi.org/10.1007/s10695-008-9293-3
  23. Seol DW, Im SY, Hur WJ, Park MO, Kim DS, Jo JY, et al. Haematological parameters and respiratory function in diploid and triploid far eastern catfish, Silurus asotus. Genes Genomics. 2008;30:205-13.
  24. Stewart HA, Allen PJ. Critical thermal maxima of two geographic strains of channel and hybrid catfish. N Am J Aquacult. 2014;76:104-11. https://doi.org/10.1080/15222055.2013.856827
  25. Wang YS. Thermal tolerance and comparison of juvenile Silurus meridionalis Chen, Pelteobagrus vachelli Richardson and Spinibarbus sinensis Bleeker [M.S. thesis]. Chongqing, China: Chongqing Normal University; 2009.
  26. Wedemeyer GA, McLeay D. Methods for determining the tolerance of fishes to environmental stressors. Cambridge, MA: Academic Press; 1981.
  27. Yanar M, Erdogan E, Kumlu M. Thermal tolerance of thirteen popular ornamental fish Species. Aquaculture. 2019;501:382-6. https://doi.org/10.1016/j.aquaculture.2018.11.041
  28. Zhang Y, Kieffer JD. Critical thermal maximum (CTmax) and hematology of shortnose sturgeons (Acipenser brevirostrum) acclimated to three temperatures. Can J Zool. 2014;92:215-21. https://doi.org/10.1139/cjz-2013-0223
  29. Ziegeweid JR, Jennings CA, Peterson DL. Thermal maxima for juvenile shortnose sturgeon acclimated to different temperatures. Environ Biol Fishes. 2008;82:299-307. https://doi.org/10.1007/s10641-007-9292-8