• Title/Summary/Keyword: Acclimation

Search Result 251, Processing Time 0.025 seconds

Changes in Blood Cell Morphology and Number of Red Spotted Grouper, Epinephelus akaara in Response to Thermal Stress

  • Rahman, Md Mofizur;Kim, Hyung Bae;Baek, Hea Ja
    • Development and Reproduction
    • /
    • v.23 no.2
    • /
    • pp.139-148
    • /
    • 2019
  • Rising of water temperature due to global warming is a great concern to aquaculturists and fishery biologists. Hence, the present study aimed to investigate the effects of high water temperature on juvenile red spotted grouper, Epinephelus akaara based on the evaluation of stress responses in blood. E. akaara juveniles were exposed to different thermal conditions ($25^{\circ}C$, $28^{\circ}C$, $31^{\circ}C$, and $34^{\circ}C$) for 6 weeks following 2 weeks of acclimation at $25^{\circ}C$. Blood cell morphology and number were examined at three sampling points (2, 7, and 42 days) from a total of 180 fish. Major erythrocytic cellular abnormalities (ECA) observed in blood smears of thermally stressed groups ($31^{\circ}C$ and $34^{\circ}C$) after 6 weeks were echinocytes, teardrop-like cells, swollen cells and vacuolated cells. Both red and white blood cell number (RBC and WBC) were significantly (p<0.05) elevated in $31^{\circ}C$ and $34^{\circ}C$ group after 6 weeks thermal exposure. Differential leucocytes number showed significant increases in neutrophil (N) and decreases in lymphocytes (L) in the highest temperature ($34^{\circ}C$). Different N:L ratio was observed at different thermal conditions which can be used as a reliable alternative to measure stress response. Taken together, these results suggest that higher temperature ($31^{\circ}C$ and $34^{\circ}C$) can interfere the immune system of red spotted grouper by altering the blood cell morphology and number.

Evolution and Breeding of Members of Pooideae Subfamily: Focusing on Upland Cereal Crops (포아풀아과(Pooideae subfamily)의 진화와 육종: 맥류 중심의 고찰)

  • Sung, Yeon Jun;Oh, Hee Won;Kang, Yuna;Kim, Chang soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.3
    • /
    • pp.220-239
    • /
    • 2021
  • Grasses (Poaceae) belong to the biggest plant family among angiosperms and it cover around 20% of the earth's surface. The members of this family are mostly utilized as food resources by humans and animals but they are also valuable in terms of evolution and ecology. The member of the subfamily Pooideae represents, temperate grasses, and includes a number of economically important crops and belongs to the clade BOP (including the subfamilies Bambooideae, Oryzeae, and Pooideae). This subfamily is the largest among all grass families. The special features of this subfamily are cold acclimation and vernalization. The members of Pooideae subfamily with the aforementioned special features are thought to have evolved in the Cenozoic era when the temperature on earth started to cool down, which triggered the diversification of this subfamily through adaptation to cold weather. The agricultural origin of wheat, barley, oat, and rye is attributed to fertile crescent and thereafter they were domesticated through Neolithic evolution. The history of domestication of each Pooideae crop is distinct and is based on their purpose. Recently, breeding of these crops is performed differently due to the development of new technologies such as genomics and genome editing. This review article summarizes the evolutionary history of the members of the subfamily Pooideae and use of pre-existing information for future breeding efforts.

Physiological responses to salt stress by native and introduced red algae in New Zealand

  • Gambichler, Vanessa;Zuccarello, Giuseppe C.;Karsten, Ulf
    • ALGAE
    • /
    • v.36 no.2
    • /
    • pp.137-146
    • /
    • 2021
  • Intertidal macroalgae are regularly exposed to hypo- or hypersaline conditions which are stressful. However, red algae in New Zealand are generally poorly studied in terms of salinity tolerance. Consequently, two native (Bostrychia arbuscula W. H. Harvey [Ceramiales], Champia novae-zelandiae [J. D. Hooker & Harvey] Harvey [Rhodymeniales]) and one introduced red algal taxon (Schizymenia spp. J. Agardh [Nemastomatales]) were exposed for 5 days in a controlled salt stress experiment to investigate photosynthetic activity and osmotic acclimation. The photosynthetic activity of B. arbuscula was not affected by salinity, as reflected in an almost unchanged maximum quantum yield (Fv/Fm). In contrast, the Fv/Fm of C. novae-zelandiae and Schizymenia spp. strongly decreased under hypo- and hypersaline conditions. Treatment with different salinities led to an increase of the total organic osmolyte concentrations with rising salt stress in B. arbuscula and Schizymenia spp. In C. novae-zelandiae the highest organic osmolyte concentrations were recorded at SA 38, followed by declining amounts with further hypersaline exposure. In B. arbuscula, sorbitol was the main organic osmolyte, while the other taxa contained floridoside. The data presented indicate that all three red algal species conspicuously differ in their salt tolerance. The upper intertidal B. arbuscula exhibited a wide salinity tolerance as reflected by unaffected photosynthetic parameters and strong sorbitol accumulation under increasing salinities, and hence can be characterized as euryhaline. In contrast, the introduced Schizymenia spp. and native C. novae-zelandiae, which preferentially occur in the mid-intertidal, showed a narrower salinity tolerance. The species-specific responses reflect their respective vertical positions in the intertidal zone.

Case report: Mass mortality of olive flounder (Paralichthys olivaceus) caused by acute gas bubble disease

  • Lee, Yoonhang;Kim, Nameun;Lee, Ju-yeop;Kang, Hyoyeong;Sung, Minji;Yu, Young-Bin;Kim, Kyunghoi;Je, Jae-Young;Kim, Hyun-Woo;Kang, Ju-Chan;Kim, Do-Hyung
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.255-259
    • /
    • 2021
  • This is the first report describing acute mass mortality occurred in juvenile olive flounder (Paralichthys olivaceus) caused by gas bubble disease (GBD). A total of 610 fish (average weight = 35 g), which were more than half of the fish acclimated at 17℃ in an aquarium, were killed within two days of acclimation. The dead and moribund fish showed excessively opened opercula and mouths, and occasionally, severe exophthalmia. Through microscopic observation, numerous gas emboli were found in the gills of the dead and live fish, while the fish were not infected with any microbial pathogens. The dissolved oxygen (DO) saturation level of the rearing water and seawater nearby the facility reached 145% and 286%, respectively, whereas other water quality parameters (such as salinity, pH, and chemical oxygen demand) were normal. The extreme saturation rate of seawater in the shore nearby seemed to be due to an enormous algal bloom that occurred there. Through molecular identification based on 18S rDNA sequences, the most dominant algal species was most closely related to Ulva californica (99.87% sequence identity) followed by U. prolifera, U. linza, and U. curvata (99.81%). Therefore, it can be concluded that supersaturated seawater due to mass algal bloom caused gas bubble disease in the olive flounder, leading to mass mortality. After technical adjustment, such as increased aeration, lowered water circulation rate, and inlet water filtration using micro-pore carbon filters, the DO level became normal, no further mortality occurred and the status of the fish was stabilized.

Relationship between saliva and blood cortisol in handled cows

  • Dzviti, Melody;Mapfumo, Lizwell;Muchenje, Voster
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.734-741
    • /
    • 2019
  • Objective: The objective of the study was to determine the relationship between plasma and salivary cortisol concentrations in beef cattle that were subjected to handling prior to sampling. Methods: Twenty-one Nguni cows of three age categories; 5 to 7 yr (n = 7), 8 to 10 yr (n = 6), and 11 to 13 yr (n = 8) were handled for five consecutive weeks. In the pen, a human avoidance test was performed and cattle responses to restraint in the chute and crush were observed. In addition, rectal temperature readings were taken and, faecal samples were collected and analysed for glucocorticoid metabolites. Through the handling and restraint process, excretory and vocalisation behaviour, as a sign of stress were observed and recorded. Thereafter, six cows were randomly selected and subjected to an adrenocorticotropic hormone (ACTH) challenge. Blood and saliva samples were extracted to determine cortisol concentrations. Results: Repeated handling affected (p<0.05) faecal glucocorticoid metabolites, rectal temperatures, avoidance distance, crush scores as well as urination and defaecation behaviour. Acclimation to handling was variable based on each respective parameter. Saliva cortisol concentrations increased and decreased significantly (p<0.001). A peak value of $136.78{\pm}15.869nmol/L$ was observed 30min after administration of ACTH, from a baseline value of $8.75{\pm}15.869nmol/L$. Plasma cortisol concentrations did not differ (p>0.05) across the time of sampling. A low and insignificant correlation (r = 0.0131, p>0.05) between plasma and saliva cortisol was therefore observed. Conclusion: We conclude that if beef cows are subjected to handling prior to sampling, a weak relationship exists between plasma and salivary cortisol levels.

High Plasticity of the Gut Microbiome and Muscle Metabolome of Chinese Mitten Crab (Eriocheir sinensis) in Diverse Environments

  • Chen, Xiaowen;Chen, Haihong;Liu, Qinghua;Ni, Kangda;Ding, Rui;Wang, Jun;Wang, Chenghui
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.240-249
    • /
    • 2021
  • Phenotypic plasticity is a rapid response mechanism that enables organisms to acclimate and survive in changing environments. The Chinese mitten crab (Eriocheir sinensis) survives and thrives in different and even introduced habitats, thereby indicating its high phenotypic plasticity. However, the underpinnings of the high plasticity of E. sinensis have not been comprehensively investigated. In this study, we conducted an integrated gut microbiome and muscle metabolome analysis on E. sinensis collected from three different environments, namely, an artificial pond, Yangcheng Lake, and Yangtze River, to uncover the mechanism of its high phenotypic plasticity. Our study presents three divergent gut microbiotas and muscle metabolic profiles that corresponded to the three environments. The composition and diversity of the core gut microbiota (Proteobacteria, Bacteroidetes, Tenericutes, and Firmicutes) varied among the different environments while the metabolites associated with amino acids, fatty acids, and terpene compounds displayed significantly different concentration levels. The results revealed that the gut microbiome community and muscle metabolome were significantly affected by the habitat environments. Our findings indicate the high phenotypic plasticity in terms of gut microbiome and muscle metabolome of E. sinensis when it faces environmental changes, which would also facilitate its acclimation and adaptation to diverse and even introduced environments.

Effect of wild ginseng on the laying performance, egg quality, cytokine expression, ginsenoside concentration, and microflora quantity of laying hens

  • Habeeb Tajudeen;JunYoung Mun;SangHun Ha;Abdolreza Hosseindoust;SuHyup Lee;JinSoo Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.351-364
    • /
    • 2023
  • The experiment was carried out to study the effect of Korean wild ginseng adventitious root supplementation on the laying performance, egg quality, cytokine expression, ginsenoside concentration, and microflora quantity of Institut de selection Animale (ISA) brown laying hens at 24 weeks old. A total of 90 laying hens were subjected to a completely randomized design at three treatments, five repetitions and six laying hens per replicate. The experiments were divided by diets into the basic feed (CON), basic feed + 0.1% wild ginseng (WG1), and basic feed + 0.5% wild ginseng (WG2). The feeding trial was carried out over a duration of 12 weeks after an initial acclimation period of 2 weeks. Feeds and water were administered ad libitum in mash form, and light was available for 16 hours per day. At the end of study, henday egg production (HDEP), average egg weight (AEW), and egg mass (EM) were increased (p <0.05) in WG2 at week 12. Feed conversion ratio (FCR) was decreased (p < 0.05) in WG2 at week 12. The ginsenoside content in egg yolk was increased (p <0.05) in laying hens in the WG2 treatment at week 12. Relative expression of tumor necrosis factor alpha (TNF-α) was reduced (p < 0.05) in the WG supplemented diets at week 12. The fecal microflora quantity of Lactobacillus was increased (p < 0.05) in WG2 at week 8 to week 12, and Escherichia coli (E. coli) was significantly decreased (p < 0.05) in the WG2 at week 12. We concluded that the result observed in the HDEP, AEW, EM and FCR was due to an increase in ginsenoside content, leading to an improvement in the TNF-α, and fecal microflora quantity such as Lactobacillus and E. coli in the WG2 supplemented diets. We therefore recommend the use of WG at application level 0.5% per basal diet for optimum laying performance in layer hens.

Solids and Nitrogen Removal in the Sludge Digestion using a Sequencing Batch Reactor (연속회분식반응조를 이용한 슬러지 소화에서 고형물과 질소의 제거)

  • Kim, Sung Hong;Lee, Yoon Heui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.669-675
    • /
    • 2006
  • Intermittent aerobic digestion experiments using a sequencing batch reactor (SBR) were carried out in this study. Aeration ratio was found to be an important operation factor for the reduction of solids and nitrogen. As the sludge digested, organic nitrogen was released from the solids and oxidized to nitrate nitrogen. Biological denitrification was also significant and the denitrification rate was limited by aeration ratio. Under the condition of 0.25-0.75 of aeration ratio, acclimation of ammonia nitrogen was not observed and pH were preserved near neutral in the intermittent aerobic digestion. As the aeration ratio increased, solids reduction was increased whereas dissolved nitrogen removal was decreased. Based on the experiments, 17-2% of VSS reduction and over 80% of dissolved nitrogen removal were practicable by intermittent aerobic digestion using a SBR when the MSRT were designed 8-32 days and aeration ratio was operated about 0.25-0.75.

Effect of Sodium ion on the Anaerobic Degradation of Food Waste : Quantitative Evaluation, Inhibition Model (주방폐기물의 혐기성분해에 대한 나트륨이온의 영향: 저해 특성평가, 저해모델)

  • Shin, Hang-Sik;Song, Young-Chae;Paik, Byeong-Cheon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.2
    • /
    • pp.3-17
    • /
    • 1994
  • The inhibitory effect of sodium ion on the anaerobic degradation of food waste was studied by an anaerobic batch toxicity assay and inhibition model. The anaerobic degradation activity of food waste spiked with over $2g\;Na^+/L$ of sodium ion was severely inhibited at the initial stage of the exposure. The inhibition response of anaerobic microorganisms on the sodium ion estimated from the methane production was differed according to the concentration of sodium ion. The relative acclimation time(RAT) and methanation rate(RMR), defined as the ratios of initial lag time and maximum methane production rate of the sample spiked with sodium ion to the control. respectively, were used to evaluate the acclimation and inhibitory effects quantitatively on the anaerobic microorganisms. When sodium ion was increased from $2g\;Na^+/L$ to $20g\;Na^+/L$, the RAT was exponentially increased from 18.9 to 90. but the RMR was linearly decreased from 0.97 to 0.02. The effects of sodium ion for the maximum methanation rate, first order kinetic constant and ultimate methane production were well evaluated by a generalized nonlinear expression model. it could be described by the uncompetitive inhibition mode. The sodium ion concentration causing 50% inhibition of methanation activity was about $11g\;Na^+/L$, and the critical sodium ion beyond to compelete inhibition was 20 to $21g\;Na^+/L$. The presented results could be used to obtain the design or operation parameters of the anaerobic process treating food waste of high salt.

  • PDF

Shading Effects on the Growth and Physiological Characteristics of Osmanthus insularis Seedlings, a Rare Species (희귀 식물 박달목서 유묘의 생장 및 생리적 특성에 대한 차광 효과)

  • Da-Eun Gu;Sim-Hee Han;Eun-Young Yim;Jin Kim;Ja-Jung Ku
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.88-96
    • /
    • 2024
  • This study was conducted to determine the optimal light conditions for the in situ and ex situ conservation and restoration of Osmanthus insularis, a rare plant species in South Korea. Evaluations included the growth performance, leaf morphological features, photosynthetic characteristics, and photosynthetic pigment contents of seedlings grown from April to November under different light conditions (100%, 55%, 20%, and 10% relative light intensity). The shoot lengths and root collar diameters did not differ significantly with relative light intensity. The dry weights of leaves, stems, and roots and the leaf number were highest at 55% relative light intensity. The leaf shape showed morphological acclimation to light intensity, with leaf area decreasing and thickness increasing as the relative light intensity increased. Several leaf parameters, including photosynthetic rate and stomatal conductance at light saturation point, net apparent quantum yield, and dark respiration, as well as chlorophyll a, chlorophyll b, and carotenoid contents, were all highest at 55% relative light intensity. Under full light conditions, the leaves were the smallest and thickest, but the chlorophyll content was lower than at 55% relative light intensity, resulting in lower photosynthetic ability. Plants grown at 10% and 20% relative light intensity showed lower chlorophyll a, chlorophyll b, and carotenoid contents, as well as decreased photosynthetic and dark respiration rates. In conclusion, O. insularis seedlings exhibited morphological adaptations in response to light intensity; however, no physiological responses indicating enhanced photosynthetic efficiency in shade were evident. The most favorable light condition for vigorous photosynthesis and maximum biomass production in O. insularis seedlings appeared to be 55% relative light intensity. Therefore, shading to approximately 55% of full light is suggested for the growth of O. insularis seedlings.