DOI QR코드

DOI QR Code

Solids and Nitrogen Removal in the Sludge Digestion using a Sequencing Batch Reactor

연속회분식반응조를 이용한 슬러지 소화에서 고형물과 질소의 제거

  • Received : 2006.03.31
  • Accepted : 2006.09.25
  • Published : 2006.11.29

Abstract

Intermittent aerobic digestion experiments using a sequencing batch reactor (SBR) were carried out in this study. Aeration ratio was found to be an important operation factor for the reduction of solids and nitrogen. As the sludge digested, organic nitrogen was released from the solids and oxidized to nitrate nitrogen. Biological denitrification was also significant and the denitrification rate was limited by aeration ratio. Under the condition of 0.25-0.75 of aeration ratio, acclimation of ammonia nitrogen was not observed and pH were preserved near neutral in the intermittent aerobic digestion. As the aeration ratio increased, solids reduction was increased whereas dissolved nitrogen removal was decreased. Based on the experiments, 17-2% of VSS reduction and over 80% of dissolved nitrogen removal were practicable by intermittent aerobic digestion using a SBR when the MSRT were designed 8-32 days and aeration ratio was operated about 0.25-0.75.

SBR반응조를 이용하여 간헐폭기의 슬러지소화 실험을 실시하였다. 폭기비율은 고형물과 질소 제거의 가장 중요한 운전인자 중의 하나였다. 슬러지의 소화에 따라 용출된 유기성질소는 질산성질소로 산화되었고, 생물학적 질소제거율도 높게 나타났는데, 질소제거율은 폭기비율에 따라 달라졌다. 폭기비율 0.25-0.75의 범위에서, 암모니아성 질소의 축적은 보이지 않았으며, pH는 중성에서 유지되었다. 폭기비율을 증가시킴에 따라 고형물 제거율은 증가하지만 용존 질소의 제거율은 감소하는 경향을 보였다. 본 실험에서 SBR 반응조를 이용하고, 평균고형물체류시간 8-32일 정도의 설계조건과 폭기비율 0.25-0.75의 운전 조건에서 VSS 제거율은 17-42% 정도, 용존질소 제거율은 80% 이상이 가능하였다.

Keywords

References

  1. 김성홍, 김희준, 정태학(2002) 간헐포기에 의한 슬러지의 호기성 소화 기술, 대한토목학회논문집, 대한토목학회, 제22권 제2-B 호, pp. 245-252
  2. 김운중, 김성홍, 김희준(2006) 간헐포기소화의 비용 평가, 대한토목학회논문집, 대한토목학회, 제26권 제I-B호, pp, 113-118
  3. 환경부(1997) 하수도시설기준
  4. Anderson, B.C. and Mavinic, D.S. (1984) Aerobic sludge digestion with pH control-preliminary investigation, Journal Water Pollution Control Federation, 56, pp. 889-897
  5. APHA, AWWA and WEF (1995) Standard Methods - for the Examination of Water and Wastewater 19th ed., Washington DC
  6. Bishop, P.L. and Farmer, M .(1978) Fate of nutrient during aerobic digestion, ASCE, Env. Eng. Div., 104, pp. 967-979
  7. Gujer, W., Henze, M., Mino T., Matsuo T., Wentzel, M.C., and Marais, G,v.R. (1995) The activated sludge model no. 2: biological phosphorus removal, Water Science and Technology, Vol. 31, No.2, pp. 1-11
  8. Mavinic, D.S. and Koers, DA (1982) Fate of nitrogen in aerobic sludge digestion, Journal Water Pollution Control Federation, Vpl. 54, No.4, pp. 352-360
  9. MetCalf & Eddy Inc. (2004) Wastewater Engineering.' Treatment and Reuse, 4-th edition, McGraw-Hill
  10. Peddie, C.C. and Mavinic, D.S. (1990) A Pilot-Scale Evaluation of Aerobic-Anoxic Sludge Digestion, Canadian Journal of Civil Engineering, Vol. 10, No.1, pp. 68-78
  11. Tonkovic Z. (1998) Aerobic stabilisation criteria for BNR biosolids, Water Science and Technology, Vol. 38, No.2, pp. 133-141