• Title/Summary/Keyword: Acclimation

Search Result 251, Processing Time 0.032 seconds

Differentially Expressed Genes under Cold Acclimation in Physcomitrella patens

  • Sun, Ming-Ming;Li, Lin-Hui;Xie, Hua;Ma, Rong-Cai;He, Yi-Kun
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.986-1001
    • /
    • 2007
  • Cold acclimation improves freezing tolerance in plants. In higher plants, many advances have been made toward identifying the signaling and regulatory pathways that direct the low-temperature stress response; however, similar insights have not yet been gained for simple nonvascular plants, such as bryophytes. To elucidate the pathways that regulate cold acclimation in bryophytes, we used two PCR-based differential screening techniques, cDNA amplified fragment length polymorphism (cDNA-AFLP) and suppression subtractive hybridization (SSH), to isolate 510 ESTs that are differentially expressed during cold acclimation in Physcomitrella patens. We used realtime RT-PCR to further analyze expression of 29 of these transcripts during cold acclimation. Our results show that cold acclimation in the bryophyte Physcomitrella patens is not only largely similar to higher plants but also displays distinct differences, suggests significant alteration during the evolution of land plants.

Evaluation of the Effect of High Salinity RO Concentrate on the Microbial Acclimation/Cultivation Characteristics in Biological Wastewater Treatment Process (RO 농축수내 고농도 염분이 생물학적 폐수처리공정내 미생물 순응/배양에 미치는 영향평가)

  • Kim, Youn-Kwon;Kang, Suk-Hyung
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.707-713
    • /
    • 2012
  • There are a lot of parameters affecting microbial acclimation/cultivation characteristics such as dynamic conditions, F/M ratio and substrate affinity. From the process control point of view, the effect of high salinity on the removal efficiencies of BOD and SS have been documented by few researchers. In this research, lab-scale CAS(Conventional Activated Sludge) process and modified $A_2O$(Anaerobic/Anoxic/Oxic) process were operated and monitored to evaluate the characteristics of microbial acclimation and cultivation under high salinity wastewater during the period of three weeks. As a result of acute microbial activity test(6hr) at various $Cl^-$ concentration, the appropriate $Cl^-$ concentration for microbial growth and acclimation ranged under 3,100 mg/l. As a result of acclimation/cultivation test, the trend of COD removal efficiency reduced gradually as time elapsed. It is considered that $NH_4$-N removal phenomenon of the conventional pollutants removal mechanisms gave little effect to the microbial acclimation/cultivation under high salinity wastewater.

Acclimation responses of Tamarix chinensis seedlings related to cold stress

  • Joo, Young-Sung;Lee, Eun-Ju
    • Journal of Ecology and Environment
    • /
    • v.34 no.3
    • /
    • pp.251-257
    • /
    • 2011
  • The purpose of this study was to investigate the acclimation responses of Tamarix chinensis to cold stress. We evaluated the acclimation responses by measuring biomass, daily elongation rate, chlorophyll content, and total soluble carbohydrate content. The plant samples comprised leaves from seedlings of 2 different ages (8 and 12 weeks); the leaves were collected 0, 2, and 4 weeks after cold treatment. We found that the cold-treated samples showed reduced daily elongation rates and chlorophyll content. Further, these samples showed more than 8-fold increase in the total soluble carbohydrate content. However, the seedling ages did not have a significant influence on the growth of cold-treated seedlings. On the basis of these findings, we can conclude that T. chinensis seedlings aged less than 1 year old show acclimation to cold stress by accumulating soluble carbohydrates. This study may help us understand how T. chinensis seedlings acclimatize to their first cold season.

Effect of Ultraviolet-B Radiation Acclimation to Fresh Water Daphnia magna Simultaneously Exposed to Several Heavy Metals and UV-B Radiation (담수 물벼룩 Daphnia magna의 자외선 B 적응이 자외선과 중금속의 동시노출에 따른 독성반응에 미치는 영향)

  • Kim, Jung-Kon;Lee, Min-Jung;Oh, So-Rin;Choi, Kyung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.2 s.95
    • /
    • pp.123-131
    • /
    • 2007
  • Many environmental contaminants including several metals, polycyclic aromatic hydrocarbons, and pharmaceuticals, have been identified to be phototoxic in the water environment. Concerns regarding photo-enhancement of toxicity of several environmental contaminants have been increasing because of the increased level of ultraviolet irradiation on the earth surface. However, there exist arguments that there might be certain defense mechanisms taking place in the aquatic ecosystem, which may include behavioral characteristics or genetic acclimation. This study was conducted to understand the potential responses of aquatic receptors to several phototoxic metals in the real environment, where long-term acclimation of such organisms to low dose UV-B may take place. For this purpose, water flea Daphnia magna was acclimated to environmentally relevant dose of UV-B (12 to $18uW/cm^2$) for >11 generations. The differences in developmental and life history characteristics, and toxicity responses were evaluated. Acclimation did not affect the daphnids' growth, longevity, and reproduction characteristics such as time to first brood, and brood size: After 21 d, survival of D. magna was not influenced by UV-B acclimation. When the number of young per female was compared. the daphnids acclimated for 11 generations tend to produce less number of neonates than the un-acclimated individuals but with no statistical significance (p>0.05). Four metals that were reported to be phototoxic elsewhere were employed in this evaluation, that include As, Cd. Cu, and Ni. UV-B level being applied in acclimation did increase the toxicity of Cd and Cu, significantly (p<0.05). However, the toxicities of As and Ni were not affected by irradiation of UV-B. Phototoxic responses were evaluated between the acclimated and the un-acclimated daphnids. For Cu, UV-B acclimation led to reduction of the photo-induced toxicity $(p\approx0.1)$ in daphnids. Non-acclimated Daphnia were affected by 50% at 4.18 ug/l Cu. but UV-B acclimated individuals exhibited $EC_{50}$ of 5.89 ug/l. With Cd, UV-B acclimation appeared to increase phototoxicity (p>0.05). With As and Ni, UV-B acclimation did not influence photo-induced toxicity. This observation may be in part explained by the type of reactive oxygen species that were generated by each metal. Similar to UV-B light, Cu is known to generate superoxide anion by acting as redox cycling toxicant. This is one of the first studies that employed_laboratory based UV-B acclimated test species for photoenhanced toxicity evaluation.

Seawater Adaptability of Land-locked Masu Salmon Oncorhynchus masou masou by Acclimation (순치 기간에 따른 육봉형 산천어(Oncorhynchus masou masou)의 해수 적응능력)

  • Kim, Pyong-Kih;Kim, Jae-Won;Park, Jeong-Hwan;Seong, Ki-Baik;Kim, Hyeon-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.753-758
    • /
    • 2011
  • The seawater adaptability of land-locked masu salmon Oncorhynchus masou masou via acclimation was examined for aquaculture purposes. The survival, blood chemistry, and histological changes of masu salmon (150 g) were measured after 7-, 15-, and 30-day acclimation periods. After a total of 60 days in seawater cultures that incorporated the various acclimation periods, survival was 83.5, 87.2, and 91.0% for the 7-, 15-, and 30-day periods, respectively; thus, survival increased with longer periods of acclimation. Feeding efficiencies were 32.1, 52.0, and 40.6% for the 7-, 15-, and 30-day periods, and specific growth rates were 0.14, 0.26, and 0.23%, respectively. Generally, masu salmon appeared to exhibit better growth performance after an acclimation period of 15 days. Cortisol concentrations [mean ${\pm}$ SD] for 7, 15, and 30 days of acclimation were $21.0{\pm}6.5$, $17.8{\pm}4.8$, and $21.2{\pm}5.4\;{\mu}g/dl$, with the lowest values occurring with 15 days of acclimation. Osmolarities were $359.2{\pm}26.1$, $350.4{\pm}29.2$, and $354.6{\pm}29.3$ mOsm/kg, and glucose concentrations were $60.7{\pm}20.7$, $72.9{\pm}17.3$, and $76.6{\pm}14.1$ mg/dl for the 7-, 15-, and 30-day acclimation periods, respectively (P < 0.05). The histological study revealed that both gills and both kidneys of the masu salmon exhibited middle- to end-stage and middle-stage lesions in the 7- and 15-day groups, respectively, whereas these organs only had early-stage lesions in the 30-day group in the final experiment. Therefore, the seawater acclimation of masu salmon should involve more than 30 days in seawater.

Effect of Acclimation Methods on Physiological Status of White Shrimp, Litopenaeus vannamei Larvae to Low Salinities (흰다리새우 유생의 저염분 순치방법에 따른 생화학적 특성변화)

  • Kim, Su Kyoung;Shim, Na Young;Jang, Jin Woo;Jun, Je Cheon;Kim, Su-Kyoung;Shin, Yoon Kyong
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • This study focused on the physiological change of the shrimp, Litopenaeus vannamei postlarvae 15 stages, under different acclimation methods up to the endpoint of 4 practical salinity unit (psu). Besides using sea water as the control, two acclimation methods, fast acclimation (50% salinity reduction every 8 hours) and slow acclimation (50% salinity reduction every day), were adapted. Results show that the survival rate, glucose and blood uric nitrogen of each group were not significantly different. However, the ion profile differed according to the acclimation methods. Magnesium and sodium of shrimps acclimated to low salinity in both the methods, showed lower concentration than shrimps at 32 psu sea water. Especially, $Na^+$ concentration, which directly influences the osmolality of shrimp, decreased sharply in the fast acclimated group during the first eight hours (from 32 psu to 16 psu). To reduce acclimation stress, it is recommended to take more than eight hours during the first step for reducing the salinity.

Effect of Salicylic Acid on Growth and Chilling Tolerance of Cucumber Seedlings

  • Lee, Gui-Soon;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.11 no.11
    • /
    • pp.1173-1181
    • /
    • 2002
  • The present study was undertaken to investigate the effect of low temperature and salicylic acid(SA) on the chilling tolerance of acclimated and nonacclimated cucumber(Cucurmis sativus L.) seedlings. The acclimation phenomenon was characterized in chilling-sensitive cucumber seedlings and found to have a significant effect on the survival and shoot dry weights. The injuries experienced by the acclimated seedlings in the third leaf stage were on average smaller by half than those experienced by the nonacclimated seedlings. Chilling also caused a large increase in the free proline levels, regardless of the acclimation status. Exogenous treatment with SA(0.5mM) resulted in improved growth and survival of the nonacclimated chilled seedlings, indicating that SA induced chilling tolerance and SA and acclimation had common effects. The application of cycloheximide in the presence of SA restored the acclimation-induced chilling tolerance. The elevated proline level observed in the cold-treated and SA-treated plants was more pronounced in the light than in the dark at a chilled temperature, indicating that endogenous proline may play a role in chilling tolerance by stabilizing the water status in response to chilling. From these results it is suggested that SA provided protection against low-temperature stress by increasing the proline accumulation, and pre-treatment with SA may induce antioxidant enzymes leading to increased chilling tolerance.

Photochemical Response in 0-Year-Old and 1-Year-Old Needles of Picea glehnii during Cold Acclimation and Low Temperature

  • Bae, Jeong-Jin;Hara, Toshihiko;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.31 no.4
    • /
    • pp.317-325
    • /
    • 2008
  • P. glehnii, an evergreen conifer found in northern areas, is known as a cold-resistant species. In this experiment, we measured the water content, PSⅡ efficiency, chlorophyll fluorescence, pigments of the xanthophyll-cycle and activity of enzymes of the ascorbate-glutathione cycle during cold acclimation and at subsequent low-temperature conditions to examine the importance of acclimation to cold tolerance. P. glehnii showed a decrease in PSⅡ efficiency (especially in Fv) during cold acclimation and at subsequent low temperatures. However, cold-acclimated needles showed higher PSⅡ efficiency at low temperatures than nonacclimated needles. In addition, 0-YON (first-year needles) showed an increase in $\beta$-carotene and lutein, while 1-YON (one-year-old needles) immediately developed an antioxidant mechanism in the ascorbate-gluthathione cycle as soon as they were exposed to low temperature and both 0-YON and 1-YON showed increased zeaxanthin and de-epoxidation ratios at continuous low temperature. Based on our results, we suggest that P. glehnii maintain PSⅡ efficiency at low temperature by effectively protecting the photosynthetic apparatus from photo-damage by rapid induction of an antioxidant mechanism in 1-YON and dissipation of excess energy by $\beta$-carotene and lutein in 0-YON.

Acclimation temperature influences the critical thermal maxima (CTmax) of red-spotted grouper

  • Rahman, Md Mofizur;Lee, Young-Don;Baek, Hea Ja
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.7
    • /
    • pp.235-242
    • /
    • 2021
  • The present study investigated the critical thermal maxima (CTmax) of red-spotted grouper, Epinephelus akaara under different acclimation temperatures (Tacc). Fish were acclimated at 24℃, 28℃, and 32℃ water temperature for 2 weeks. Water temperature was increased at a rate of 1℃/h and CTmax level was measured following the critical thermal methodology (Paladino et al., 1980). The results showed that CTmax values of E. akaara were 35.61℃, 36.83℃, and 37.65℃ for fish acclimated at 24℃, 28℃, and 32℃, respectively. The acclimation response ratio (ARR) was 0.26. The CTmax values were significantly correlated with body size. Collectively, it is said that the CTmax value of red-spotted grouper can be affected by different adaptation temperature (24℃, 28℃, and 32℃) and the fish acclimated to a higher temperature has a higher CTmax level. Besides, the CTmax value of 35.61℃-37.65℃ indicating the upper thermal tolerance limit for E. akaara under different Tacc (24℃, 28℃, and 32℃). Understanding the thermal tolerance of E. akaara is of ecological importance in the conservation of this species.

Effects of low temperature and salicylic acid on chilling tolerance in cucumber seedlings

  • Jung, Sang-Duck;Jung, You-Jin;Kim, Tae-Yun;Hong, Jung-Hee
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2002.05b
    • /
    • pp.468-471
    • /
    • 2002
  • The present study was undertaken to Investigate the effects of low temperature and salicylic acid (SA) on chilling tolerance In acclimated and nonacclimated cucumber seedlings. Acclimation significantly affected survival and shoot dry weights. Injuries of acclimated seedlings at the third leaf stage were on the average smaller by half than those of the nonacclimated ones. Chilling caused a large increase in free proline levels, regardless of acclimation status. Exogenous treatment with SA resulted in improvement in growth and survival of acclimated, chilled seedlings, indicating SA and acclimation have common effects. Cycloheximide treatment In the presence of SA restored acclimation-induced chilling tolerance. An elevated proline level was observed in cold-treated and SA- treated plants and the level was more pronounced in the light than in the dark at chilled temperature, indicating that endogenous proline may play a role in chilling tolerance.

  • PDF