DOI QR코드

DOI QR Code

Effect of Acclimation Methods on Physiological Status of White Shrimp, Litopenaeus vannamei Larvae to Low Salinities

흰다리새우 유생의 저염분 순치방법에 따른 생화학적 특성변화

  • 김수경 (국립수산과학원 서해수산연구소) ;
  • 심나영 (국립수산과학원 서해수산연구소) ;
  • 장진우 (국립수산과학원 서해수산연구소) ;
  • 전제천 (국립수산과학원 서해수산연구소) ;
  • 김수경 (국립수산과학원 서해수산연구소) ;
  • 신윤경 (국립수산과학원 남동해수산연구소)
  • Received : 2016.12.02
  • Accepted : 2017.03.09
  • Published : 2017.03.31

Abstract

This study focused on the physiological change of the shrimp, Litopenaeus vannamei postlarvae 15 stages, under different acclimation methods up to the endpoint of 4 practical salinity unit (psu). Besides using sea water as the control, two acclimation methods, fast acclimation (50% salinity reduction every 8 hours) and slow acclimation (50% salinity reduction every day), were adapted. Results show that the survival rate, glucose and blood uric nitrogen of each group were not significantly different. However, the ion profile differed according to the acclimation methods. Magnesium and sodium of shrimps acclimated to low salinity in both the methods, showed lower concentration than shrimps at 32 psu sea water. Especially, $Na^+$ concentration, which directly influences the osmolality of shrimp, decreased sharply in the fast acclimated group during the first eight hours (from 32 psu to 16 psu). To reduce acclimation stress, it is recommended to take more than eight hours during the first step for reducing the salinity.

본 연구는 흰다리새우 초기유생이 (Postlarvae 15) 4 psu 저염분 순치 시 생리학적 변화에 관한 연구로서 순치방법, 즉 일반 해수를 비교구로 하고 8시간마다 빠르게 염분을 50%씩 감소를 한 실험구 (fast acclimation; F.A.)와 하루에 50%씩 천천히 염분을 감소시킨 실험구 (slow acclimation; S.A.)를 설정하여 생리학적 변화를 비교하였다. 생존율, gloucose와 혈중 요소성 질소의 함량이 순치방법에 따라 유의적인 차이를 보이지 않았으나 이온의 조성은 순치방법에 따라 차이를 보였다. 저염분에 순치된 새우의 체액 조성 중 마그네슘과 나트륨은 염분 32 psu에서 보다 낮은 농도를 보였다. 특히 나트륨 농도는 직접적으로 새우의 삼투압 조절에 영향을 미치는데 빠르게 순치를 시킨 F.A. 실험구에서 급격히 나트륨 농도가 감소하는 것으로 나타났다 (염분 32 psu에서 16 psu로 감소). 순치과정에서 새우의 스트레스를 줄이기 위해서는 처음 50% 염분을 감소시키는 과정은 8시간 이상으로 유지하고 그 이후에는 빠르게 순치하는 방법을 적용하는 것이 바람직할 것으로 파악되었다.

Keywords

References

  1. Atwood HL, SP Young, JR Tomasso and CL Browdy. 2003. Survival and growth of Pacific white shrimp Litopenaeus vannamei postlarvae in low salinity and mixed-salt environments. J. World Aquac. Soc. 34:519-523.
  2. Bachere E, E Mialhe and J Rodriguez. 1995. Identification of defense effector in the haemolymph of crustacean with particular reference to the shrimp, Penaeus japonicus (Bate): prospects and applications. Fish Shellfish Immunol. 5:597- 612. https://doi.org/10.1016/S1050-4648(95)80044-1
  3. Boyd CE and T Thunjai. 2003. Concentrations of major ions in waters of inland shrimp farms in China, Ecuador, Thailand, and the United States. J. World Aquac. Soc. 34:524-532. https://doi.org/10.1111/j.1749-7345.2003.tb00092.x
  4. Castillo-Soriano FA, VA Ibarra-Junquera, FJ Olivos-Ortiz, FJ Barragán-Vázquez and AO Meyer-Willerer. 2010. Influence of water supply chemistry on white shrimp (Litopenaeus vannamei) culture in low-salinity and zero-water exchange ponds. Panam. J. Aquat. Sci. 5:376-386.
  5. Charmantier G and C Soyez. 1994. Effect of molt stage and hypoxia on osmoregulatory capacity in the penaeid shrimp Penaeus vannamei. J. Exp. Mar. Biol. Ecol. 178:233-246. https://doi.org/10.1016/0022-0981(94)90038-8
  6. Davis DA, TM Samocha and CE Boyd. 2004. Acclimation Pacific white shrimp Litopenaeus vannamei to inland, low salinity waters. SRAC publication No. 2601.
  7. Fieber LA and PL Lutz. 1982. Calcium requirements for molting in Macrobrachium rosemberggi. J. World Aquac. Soc. 13:21-27.
  8. Hall MR and EH van Ham. 1998. The effects of different types of stress on lood glucose in the giant tiger Prawn, Penaeus monodon. J. World Aquac. Soc. 29:290-299. https://doi.org/10.1111/j.1749-7345.1998.tb00649.x
  9. Huong DTT, S Jasmani, V Jayasankar and M Wilder. 2010. Na/K-ATPase actiity and osmo-ionic regulation in adult whiteleg shrimp Litopenaeus vannamei exposed to low salinities. Aquaculture 304:88-94. https://doi.org/10.1016/j.aquaculture.2010.03.025
  10. Jayasankar V, S Jasmani, T Momura, S Nohara, DTT Huong and MN Wilder. 2009. Low salinity rearing of the Pacific white shrimp Litopenaeus vannamei: Acclimation, survival and growth of postlarvae and juveniles. JARQ 43:345-350. https://doi.org/10.6090/jarq.43.345
  11. Loeza F, MA Hurtado, JL Ramirez, O Arjona, IS Racotta and E Palacios. 2005. Effect of HUFA on osmoregulatory capacity in shrimp (Litopenaeus vannamei) postlarvae. 6th International Crustacean Congress, Glasgow, UK, p. 167.
  12. Lignot JH, C Spanings-Pierro and G Charmantier. 2000. Osmoregulatory capacity as a tool in monitoring the physiological condition and the effect of stress in crustaceans. Aquaculture 191:209-245. https://doi.org/10.1016/S0044-8486(00)00429-4
  13. Laramore S, RC Laramore and J Scarpa. 2001. Effect of low salinity on growth and survival of postlarvae and juvenile Litopenaeus vannamei. J. World Aquac. Soc. 32:385-392. https://doi.org/10.1111/j.1749-7345.2001.tb00464.x
  14. Mantel LH and LL Farmer. 1983. Osmotic and ionic regulation, in Mantel, LH. (Ed.) The biology of crustacea 5. Internal anatomy and physiological regulation: 53-161.
  15. McGraw WJ, DA Davis, D Teichert-Coddington and DB Rouse. 2002. Acclimation of Litopenaeus vannamei postlarvae to low salinity: Influence of Age, Salinity endpoint, and rate of salinity reduction. J. World Aquac. Soc. 33:78-84. https://doi.org/10.1111/j.1749-7345.2002.tb00481.x
  16. McGraw WJ and J Scarps. 2003. Minimum Environmental potassium for survival of Pacific white shrimp Litopenaeus vannamei (Boone) in freshwater. J. of Shellfish Res. 22: 263-267.
  17. McGraw WJ and J Scarps. 2004. Mortality of freshwater-acclimated Litopenaeus vannamei associated with acclimation rate, habituation period, and ionic challenge. Aquaculture 236:285-296. https://doi.org/10.1016/j.aquaculture.2004.01.037
  18. McGraw WJ, DA Davis, D Teichert-Coddington and DB Rouse. 2002. Acclimation of Litopenaeus vannamei Postlarvae to low salinity: Influence of age, salinity endpoint, and rate of salinity reduction. J. World Aquac. Soc. 33:78-82. https://doi.org/10.1111/j.1749-7345.2002.tb00481.x
  19. Pequeux A. 1995. Osmotic regulation in crustaceans. J. Crustac. Biol. 15:1-60. https://doi.org/10.1163/193724095X00578
  20. Purssell RA, M Pudek, J Brubacher and RB Abu-Laban. 2001. Derivation and validation of a formula to calculate the contribution of ethanol to the osmolar gap. Ann. of Emerg. Med. 38:653-659. https://doi.org/10.1067/mem.2001.119455
  21. Palacios E and IS Racotta. 2007. Salinity stress test and its relation to future performance and different physiological responses in shrimp postlarvae. Aquaculture 268:123-135. https://doi.org/10.1016/j.aquaculture.2007.04.034
  22. Racotta IS and E Palacios. 1998. Hemolymph metabolic variables in response to experimental manipulation stress and serotonin injection in Penaeus vannamei. J. World Aquac. Soc. 29:351-356. https://doi.org/10.1111/j.1749-7345.1998.tb00658.x
  23. Robertson JD. 1953. Further studies on ionic regulation in marine invertebrates. J. of Exp. Biol. 30:277-299.
  24. Roy LA, DA Davis, IP Saoud and RP Henry. 2007. Effects of varying levels of aqueous potassium and magnesium on survival, growth and respiration of the Pacific white shrimp, Litopenaeus vannamei, reared in low salinity waters. Aquaculture 262:461-469. https://doi.org/10.1016/j.aquaculture.2006.10.011
  25. Sanchez MN, V Gonzalez, P Aguayo, JM Sanchez, MA Tanimoto, J Elizondo and M Uribe. 2001. Fish oil (n-3) polyunsaturated fatty acids beneficially affect biliary choesterol nucleation time in obese women losing weight. J. Nutr. 131:2300-2303. https://doi.org/10.1093/jn/131.9.2300
  26. Saoud IP, DA Davis and DB Rouse. 2003. Suitability studies of inland well waters for Litopenaeus vannamei culture. Aquaculture 21:373-383.
  27. Scarpa J and DE Vaughan. 1998. Culture of the Marine Shrimp, Penaeus vannamei, in Freshwater. Aquaculture 98:473.
  28. Spaargaren DH, PA and Jr. Haefner. 1987. The effect of environmental osmotic conditions on blood and tissue glucose levels in the brown shrimp, Crangon crangon (L.). Comp. Bioche. Physiol. 87A:1045-1050.