• Title/Summary/Keyword: Accident concentration

Search Result 246, Processing Time 0.03 seconds

Analyses on the recriticality and sub-critical boron concentrations during late phase of a severe accident of pressurized water reactors

  • Yoonhee Lee;Yong Jin Cho;Kukhee Lim
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3241-3251
    • /
    • 2023
  • The potential for recriticality and sub-critical boron concentrations is analyzed during the relocation of the fuel rods in the assembly, which we call late phase of a severe accident, via coupling between MELCOR and whole-core Monte Carlo analyses by Serpent 2. The recriticality, initiated during the early phase, is found to maintain when the fuel assemblies containing intact fuel rods are submerged by the cooling water. It is also found that the effect of the negative reactivity insertion via remaining fission products in the fuel debris increases as the burnup increases. The sub-critical boron concentrations during the late phase are found to be 76~544 ppm lower than those during the early phase. Therefore, it can be concluded that the boron concentration that prevents recriticality not only during the early phase but also during the late phase is the sub-critical boron concentration during the early phase.

Numerical analysis on in-core ignition and subsequent flame propagation to containment in OPR1000 under loss of coolant accident

  • Song, Chang Hyun;Bae, Joon Young;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2960-2973
    • /
    • 2022
  • Since Fukushima nuclear power plant (NPP) accident in 2011, the importance of research on various severe accident phenomena has been emphasized. Particularly, detailed analysis of combustion risk is necessary following the containment damage caused by combustion in the Fukushima accident. Many studies have been conducted to evaluate the risk of local hydrogen concentration increases and flame propagation using computational code. In particular, the potential for combustion by local hydrogen concentration in specific areas within the containment has been emphasized. In this study, the process of flame propagation generated inside a reactor core to containment during a loss of coolant accident (LOCA) was analyzed using MELCOR 2.1 code. Later in the LOCA scenario, it was expected that hydrogen combustion occurred inside the reactor core owing to oxygen inflow through the cold leg break area. The main driving force of the oxygen intrusion is the elevated containment pressure due to the molten corium-concrete interaction. The thermal and mechanical loads caused by the flame threaten the integrity of the containment. Additionally, the containment spray system effectiveness in this situation was evaluated because changes in pressure gradient and concentrations of flammable gases greatly affect the overall behavior of ignition and subsequent containment integrity.

구미 불산 누출사고 지점 주변 식물의 불소화합물 농도 분포 및 공기 중 불화수소 농도 추정에 관한 연구 (Study on the Distribution of Fluorides in Plants and the Estimation of Ambient Concentration of Hydrogen Fluoride Around the Area of the Accidental Release of Hydrogen Fluoride in Gumi)

  • 구슬기;최인자;김원;선옥남;김신범;이윤근
    • 한국환경보건학회지
    • /
    • 제39권4호
    • /
    • pp.346-353
    • /
    • 2013
  • Objectives: The goal of this study is to identify the distribution of the foliar fluorine content of vegetation surrounding the area where hydrofluoric acid was accidently released in Gumi, Gyeongsangbuk-do on September 27, 2012. In addition, it also aims to estimate the concentration of hydrogen fluoride in the air on the day of the accident. Methods: Samples of plant leaves were collected on October 7, 2012 within 1 km from the site where the accident occurred. These samples were analyzed for soluble fluorine ion with an ion selective electrode. The ambient concentration of hydrogen fluoride was calculated using the fluoride content in the plant via the dose-rate equation (${\Delta}F$=KCT). Results: The arithmetic and geometric means of the concentrations were 2158.2 and 1183.7mg F $kg^{-1}$ for leaves and, 2.4 and 1.1 ppm HF for the air, respectively. The highest concentration of hydrogen fluoride in the air was 14.7 ppm, which is higher than the maximum concentration reported by the government (1 ppm) and the exposure limit (ceiling, 3 ppm). The concentrations of both fluorine and hydrogen fluoride decreased with increasing distance from the accident site and showed a significant decrease outside of a 500m radius from the site (p <0.05). Conclusions: The area around the accident site was highly polluted with hydrogen fluoride according to the results of this study. Considering the persistency of hydrogen fluoride in the environment, long-term monitoring and environmental impact assessment should be pursued.

Analysis of Relationship between Construction Accidents and Particulate Matter using Big Data

  • Lee, Minsu;Jeong, Jaewook;Jeong, Jaemin;Lee, Jaehyun
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.128-135
    • /
    • 2022
  • Because construction work is conducted outdoors, construction workers are affected by harmful environmental factor. Especially, Particulate Matter (PM10) is one of the harmful environmental factors with a diameter of 10㎍/m3 or less. When PM10 is inhaled by human, it can cause fatal impact on the human. Contrary to the various analyses of health impact on PM10, the research on the relationship between construction accidents and PM10 are few. Therefore, this study aims to conduct the relative frequency analysis which find out the correlation between construction accidents and PM10, and the modified PM10 grade is suggested to expect accidents probability caused by PM10 in the construction industry. This study is conducted by four steps. i) Establishment of the database; ii) Classification of data; iii) Analysis of the Relative Frequency of accidents in the construction industry by PM10 concentration; iv) Modified PM10 groups to classify the impact of PM10 on accident. In terms of frequency analysis, the most accidents were occurred in the average concentration of PM10 (32㎍/m3). However, we found that the relative frequency of accident was increased as the concentration of PM10 increased. This means the higher PM10 concentration can cause more accidents during construction. In addition, PM10 concentration was divided as 6 groups by the WHO, but the modified PM10 grade by the relative frequency on accident was suggested as 3 groups.

  • PDF

HYDROGEN BEHAVIOR IN THE IRWST OF APR1400 FOLLOWING A STATION BLACKOUT

  • Kim, Han-Chul;Suh, Nam-Duk;Park, Jae-Hong
    • Nuclear Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.195-200
    • /
    • 2006
  • In order to confirm the integrity of IRWST following a severe accident, the hydrogen behavior inside and around the IRWST has been investigated for an SBO accident. A detailed containment model, including 18 control volumes for IRWST, has been developed. Analysis results show that the peak hydrogen concentration is about 57% during the core melting period. The combustion regime shows that flame acceleration and DDT are possible in the IRWST. The flame acceleration criterion is met when the peak hydrogen concentration occurs; the 7 -DDT criterion is also met during some periods. These results show certain measures may be required to assure IRWST integrity against an SBO accident.

Impact of hydrogen on rupture behaviour of Zircaloy-4 nuclear fuel cladding during loss-of-coolant accident: a novel observation of failure at multiple locations

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.474-483
    • /
    • 2021
  • To establish the exclusive role of hydrogen on burst behaviour of Zircaloy-4 during loss-of-coolant accident transients, an extensive single-rod burst tests were conducted on both unirradiated as-received and hydrogenated Zircaloy-4 cladding tubes at different heating rates and internal overpressures. The visual observations of cladding tubes during bursting as well as post-burst are presented in detail to understand the effect of hydrogen concentration, heating rate, and internal pressure. Impact of hydrogen on burst parameters-burst stress, burst strain, burst temperature-during loss-of-coolant accident transients are compared and discussed. Rupture at multiple locations for hydrogenated cladding at lower internal pressure and higher heating rate is reported for the very first time. A novel burst criterion accounting hydrogen concentration in nuclear fuel cladding is proposed.

Radiation Dose Assessment Model for Terrestrial Flora and Fauna and Its Application to the Environment near Fukushima Accident

  • Keum, Dong-Kwon;Jeong, Hyojoon;Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho
    • Journal of Radiation Protection and Research
    • /
    • 제45권1호
    • /
    • pp.16-25
    • /
    • 2020
  • Background: To investigate radiological effects on biota, it is necessary to assess radiation dose for flora and fauna living in a terrestrial ecosystem. This paper presents a dynamic model to assess radioactivity concentration and radiation dose of terrestrial flora and fauna after a nuclear accident. Materials and Methods: Litter, organic soil, mineral soil, trees, wild crops, herbivores, omnivores, and carnivores are considered the major components of a terrestrial ecosystem. The model considers the physicochemical and biological processes of interception, weathering, decomposition of litter, percolation, root uptake, leaching, radioactive decay, and biological loss of animals. The predictive capability of the model was investigated by comparison of its predictions with field data for biota measured in the Fukushima forest area after the Fukushima nuclear accident. Results and Discussion: The predicted radioactive cesium inventories for trees agreed well with those for evergreens and deciduous trees sampled in the Fukushima area. The predicted temporal radioactivity concentrations for animals were within the range of the measured radioactivity concentrations of deer, wild boars, and black bears. The radiation dose for the animals were, for the whole simulation time, estimated to be much smaller than the lower limit (0.1 mGy·d-1) of the derived consideration reference level given by the International Commission on Radiological Protection for terrestrial flora and fauna. This suggested that the radiation effect of the accident on the biota in the Fukushima forest would be insignificant. Conclusion: The present dynamic model can be used effectively to investigate the radiological risk to terrestrial ecosystems following a nuclear accident.

불산의 비정상 확산거동 예측을 위한 대와동모사 (Large Eddy Simulation for the Prediction of Unsteady Dispersion Behavior of Hydrogen Fluoride)

  • 고민욱;오창보;한용식;최병일;도규형;김명배;김태훈
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.14-20
    • /
    • 2015
  • A Large Eddy Simulation(LES) was performed for the prediction of unsteady dispersion behavior of hydrogen fluoride (HF). The HF leakage accident occurred at the Gumi fourth industrial complex was numerically investigated using the Fire Dynamics Simulator (FDS) based on the LES. The accident area was modeled three-dimensionally and time-varying boundary conditions for wind were adopted in the simulation for considering the realistic accident conditions. The Message Passing Interface (MPI) parallel computation technique was used to reduce the computational time. As a result, it was found that the present LES simulation could predict the unsteady dispersion features of HF near the accident area effectively. The dispersion behaviors of the leaked HF was much affected by the unsteady wind direction. The LES could predict the time variation of the HF concentration reasonably and give an useful information for the risk analysis while the prediction with the time-averaging concept of HF concentration had a limitation for the amount of HF concentration at specific location point. It was identified that the LES is very useful to predict the dispersion characteristics of hazardous chemicals.

Ivermectin, praziquantel, tamiflu, triclosan의 환경위해성평가 (Environmental Risk Assessment for Ivermectin, Praziquantel, Tamiflu and Triclosan)

  • 류태권;김정곤;김경태;이재우;김지은;조재구;윤준헌;이재안;김필제;류지성
    • 한국환경보건학회지
    • /
    • 제44권2호
    • /
    • pp.196-203
    • /
    • 2018
  • Objectives: The purpose of this study was to assess environmental risk on the emerging contaminants of concern, such as ivermetin, parziquantel, tamiflu and triclosan. Furthermore, we tried to provide a more efficient management practice and a basis for future studies of risk assessment on those substances. Methods: Predicted no effect concentration (PNEC) and predicted environmental concentration (PEC) were determined through modeling and literature reviews. Environmental risk assessment was evaluated by calculating HQ (hazard quotient) by a comparison of PEC (or measured environmental concentration (MEC)) and PNEC. Results: HQ value of tamiflu calculated from MEC was 1.9E-03. For ivermectin and triclosan, the HQ values were not available because these were not detected in the aquatic environment. The toxicity of ivermectin and triclosan showed a very low value, indicating a high level of HQ. However, praziquantel can be categorized into the material that do not require management since they have less than HQ 1. Conclusion: Based on the results of the initial risk assessment, it is assumed that the ivermectin and triclosan have potential to cause direct adverse effects on the aquatic environment. To conduct an accurate environmental risk assessment, the further study on PEC estimation of such contaminants should be actively carried out.

금속제품 제조 산업장내 공기중 금속농도에 관한 연구 (A Study on Metal Concentrations in the Air of Metal Products Manufacturing Industry)

  • 강용선;김세동;구태형;윤형렬;문덕환;한용수
    • 한국산업보건학회지
    • /
    • 제6권2호
    • /
    • pp.249-264
    • /
    • 1996
  • This study was conducted for the purpose of obtaining the fundamental data on improvement of working environment and contributing to health improvement of workers who dealed with metal by assessing the metal concentration in air of industries located in Chang-Won Industrial Complex. Authors measured the concentration of metals(Al, Cd, Cr, Cu, Mn, Ni, Pb, Sn and Zn) is the air to 25 working processes of 73 industries by flame atomic absorption spectrometry from February to December 1994. Personal air sampler was used for air sampling with mixed cellulose-ester membrane filter. The results were as follows : 1. The geometric means(range) of metal concentration; 1) Al: $0.1505mg/m^3$ ($0.0147-18.6100mg/m^3$) 2) Cd: $0.0077mg/m^3$ ($0.0003-7.0710mg/m^3$) 3) Cr: $0.0163mg/m^3$ ($0.0013-1.1510mg/m^3$) 4) Cu: $0.0097mg/m^3$ ($0.0009-0.4950mg/m^3$) 5) Mn: $0.0412mg/m^3$ ($0.0006-4.7877mg/m^3$) 6) Ni: $0.0088mg/m^3$ ($0.0001-1.0170mg/m^3$) 7) Pb: $0.0152mg/m^3$ ($0.0015-0.4499mg/m^3$) 8) Sn: $0.0486mg/m^3$ ($0.0037-0.1500mg/m^3$) 9) Zn: $0.1911mg/m^3$ ($0.0122-8.2920mg/m^3$) 2. The geometric mean of lead exceeded TWA in assembling process of other general purpose machinery not elsewhere classified products manufacturing industries.

  • PDF