• Title/Summary/Keyword: Accident concentration

Search Result 250, Processing Time 0.026 seconds

An Evaluation on Airborne Particulate and It's Components in the Welding Workplace for the Ship Construction Industry (조선업 용접작업장의 공기중 입자상물질 및 구성성분에 관한 연구)

  • Kang, Yong-Seon;Shin, Joong-Kyu;Lee, Song-Kwon;Yoon, Chung-Sik;Lim, Moo-Hyuk;Park, Man-Chul;Sim, Sang-Hyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.3
    • /
    • pp.245-253
    • /
    • 2007
  • This research was performed to evaluate the airborne personal concentration of hazardouse materials during the process of ship construction and surveyed from May 23 to June 30, 2007 in Kyungnam West Distirct, Korea. The subject was 94 ship construction workers exposed to welding fume and respirable particulate. The airborne concentrations of those were compared to Permissible Exposure Limit(PEL) from the Ministry of Labor in Korea. The airborne concentration of 23 samples(48.9%) of welding fumes was less than $5mg/m^3$, that of 16 (34.0%) was between 5 and $10mg/m^3$, and that of 8 (17.0%) was greater than $10mg/m^3$. The airborne concentration of 27 (57.4%) of respirable particulate masses was less than $5mg/m^3$ and the othere are greater than $5mg/m^3$. The welding fumes were identified containing the heavy metasl such as Fe, Mn, Zn, Mg, Ca, and Cu. The respirable particulates has similiar tendency with welding fumes in the component of heavy metals. But the concentration of Ca, Cu, Cr, and Ni turned out to be higher in welding fumes. Twenty (42.6%) of the 47 samples of welding fumes were exceeded PEL. In the heavy metals in welding fumes, ten (21.3%) of the 47 samples of Mn were exceeded PEL. Based on the results, the higher airborne hazardous materials were still exposed to wokers in ship construction process. It is suggested that the appropriate engineering control be applied to minimize the exposed cocnetration in ship building processes.

Evaluation of Exposure Indicators for Plants by Silicon Tetrachloride Release (사염화규소 누출사고지점 주변 식물에 대한 노출지표 평가)

  • Park, Jae-Seon;Kim, Jee-Young;Kim, Myeong-Ock;Park, Hyun-Woo;Chung, Hyen-Mi;Choi, Jong-Woo
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.288-292
    • /
    • 2017
  • BACKGROUND: Silicon tetrachloride reacts with moisture in the atmosphere to generate hydrogen chloride, which affects the environment. Since silicon tetrachloride and its by-products are dispersed in the atmosphere in a short time after the silicon tetrachloride release into the atmosphere, it is difficult to directly assess the extent of environmental impact. In the present study, the exposure test of silicon tetrachloride or hydrogen chloride was examined in order to establish the criterion of the range affected by the silicon tetrachloride release, and the actual crops in the area exposed to silicon tetrachloride leakage were analyzed. METHODS AND RESULTS: For the experiment of exposure to silicon tetrachloride or hydrogen chloride, the leaves of red-pepper and corn were used in glass sealed containers. In the actual accident area, 59 samples from 10 different kinds of crops were collected. The pretreatment of the sample was performed by freezing and grinding, and then extracted using distilled water. The pH and concentration of chloride ($Cl^-$) ion of the extracted solution were measured using pH meter and ion chromatograph, respectively. CONCLUSION: Exposure to silicon tetrachloride caused visible damage, increasing the concentration of chloride ion, and decreasing the pH as well as hydrochloric acid. In the actual crops of the affected area, the tendency was the same as the result of the laboratory test, and the range of influence could be estimated through the concentration of $Cl^-$ ion over 2,000 mg/kg, and the correlation evaluation between the concentration of $Cl^-$ and pH. Therefore, the concentration of $Cl^-$ ion and the correlation between $Cl^-$ and pH would be considered as the factors to estimate the influence range of silicon tetrachloride release.

Prediction of Travel Time and Longitudinal Dispersion for Water Pollutant by Using Unit Concentration Response Function (단위오염도틀 이용한 하천 오염물질의 이동시간과 종확산 예측)

  • Kim, Soo-Jun;Kim, Hung-Soo;Kim, Byung-Sik;Seoh, Byung-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.395-403
    • /
    • 2006
  • This study suggests the use of a simple method, called the unit concentration response function(UCRF) for predicting travel time and dispersion of pollutants with the minimum information of study area instead of numerical models which are widely used In the Previous studies. However, the numerical models require time-consuming, tedious effort, and many data sets. So we derive the UCRF using some components such as travel time, peak concentration, and passage time of pollutant etc. We use the regression equation for the estimations of components which were developed from the investigations of many river basins in USA. This study used the regression equaiton for the UCRF to the accident of Dichloromethane leak into the Nakdong River occurred on June 30, 1994 and applied the UCRF for the predictions of travel time and dispersion. The predictions were compared with the results by QUAL2E model. The results by the regression equaiton and QUAL2E model had a good agreement between observed and simulated concentrations. Therefore, the regression equation for the UCRF which can simply estimate travel time and concentration of pollutants showed its applicability for the ungaged basin.

A Study on the Mortality in Oxygen and Toxic Gas Concentration According using Experimental Animals (실험동물을 이용 산소 및 유해가스 농도에 따른 치사율 연구)

  • Kim, Hyeon-Yeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.18-25
    • /
    • 2013
  • It may occur health hazards or death by suffocation or acute poisoning in case of oxygen deficiency in ambient or exposure to harmful gas. As a part of accident prevention, we studied the change of activity and lethal dose by changing the concentration of several hazardous gas with inhalation exposure chamber and laboratory animals. We investigated the lethality and motility change during either the 4 hrs whole body exposure to oxygen, nitrogen, toluene, $H_2S$, CO and 48 recovery. As results, it is estimated that 5% oxygen concentration as lethal concentration and 5.5% as $LC_{50}$ (rat, 4 hrs) with statistics for dose-response. The results of lethality in oxygen deficient condition (approximately 6%), the lethalities were 40%, 20% with 20 ppm $H_2S$, 600 ppm CO respectively, and was not increased the lethality with 8% CO. Thus, it was confirmed that the $H_2S$, CO had influence to lethal dose, while toluene had low fluence.

Design and Implementation of Concentration Calculation Algorithm for the Infrared Combustible Gas Detector (적외선 가연성 가스검지기의 농도 산출 알고리즘의 설계 및 구현)

  • Han, Seungho;Lyu, Geunjun;Lee, Yeonjae;Kim, Hiesik;Park, Gyoutae
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.145-152
    • /
    • 2016
  • Recently, we can find news about toxic and combustible gas accident. So, we have to develop gas detector that can measure gas at dangerous area for preventing gas accidents. In this paper, we calculate a approximation function from sensor's output using the linear regressiong. And we develop software algorithm using Neville's algorithm for measuring gas concentration. Finally, we compare our algorithm with combustible gas detectors that are already developed, by using standard gas samples manufactured Korea Gas Safety. As a result of this experiment, we confirm that performance of our algorithm is more improved than performance of already developed combustible gas detectors. In the future, we'll research how to improve reliability from using count, temperature and humidity. And we'll design hardware applied explosion proof for safety.

Study on the storage stability of allyl chloride and carbon disulfide in tedlar bags (테들라 백에서의 알릴클로라이드와 이황화탄소 보존성 연구)

  • Lee, Jinseon;Kim, Kijoon;Yoon, Junheon;Cho, Seokyeon
    • Analytical Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.381-386
    • /
    • 2013
  • The sixty nine chemicals that are closely linked to chemical accident are designated as the substances requiring preparation for accidents and managed for public health under the Toxic Chemicals Control Act. In this study, storage stability of allyl chloride (AC) and carbon disulfide (CD), which are highly inflammable and volatile in tedlar bags, was studied for gaseous chemicals sampling. Storage stability was studied considering storage temperature ($2^{\circ}C$, $25^{\circ}C$), chemical concentration (low conc. ppm, high conc. ppm) and storage time (0, 48, 96, and 144 hr). Also, the stability of bags containing one type of chemical substance and the bags containing a mixture of chemicals was compared against each other. As a result, two chemicals showed decreasing storage stability based on storage time. Also two chemicals presented statistical significance of concentration and mixing type.

A Study on the Safe Gap for Explosion-proof (내압방폭을 위한 Safe Gap의 측정에 관한 연구)

  • Oh Kyu-hyung
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • In case of using the electrical apparatus in the hazardous atmosphere which exist flammable gas mixtures, There is a dangerosity of gas explosion accident by the electrical spark. The most general method to prevent the explosion by the spark is to use the flame-proof type electrical apparatus to isolate the ignition source. from the flammable atmosphere. But actualy it is impossible to isolate the ignition sources from the atmosphere. So it was needed to find the safe gap which prevent ignition of flammable atmosphere by transmission of flame or heat when a flammable gas mixture exploded inside the apparatus. In this study we tried to find the maximum experimental safe gap(MESG) of $H_2$-air, and $CH_4$-air mixtures by using the 8 litre spherical vessel with 25mm flange. The experiment parameter were ignition position, concentration and initial pressure before explosion. From the experiment the ignition position was affected to the MESG. MESG value was minimum near the stoichiometric concentration of gas mixtures, and according to the increase of initial pressure MESG was decreased.

  • PDF

Organic Matter Cycle by Biogeochemical Indicator in Tidal Mud Flat, West Coast of Korea (생지화학적 지표를 이용한 서해안 갯벌 퇴적층에서의 유기물 순환에 관한 연구)

  • Lee, Dong-Hun;Lee, Jun-Ho;Jeong, Kap-Sik;Woo, Han Jun;Kang, Jeongwon;Shin, Kyung-Hoon;Ha, Sun-Yong
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.25-37
    • /
    • 2014
  • To understand the degradation processes of organic matter related to sulfate reduction by Sulfate Reduction Bacteria (SRB) in the tidal flat sediments of Hwang-do and Sogeun-ri, Tae-an Peninsula in Chungnam-do, biogeochemical characteristics were analyzed and highlighted using specific microbial biomarkers. The organic geochemical parameters (TOC, ${\delta}^{13}C_{org}$, C/N ratio, long-chain-n-alkane) indicate that most of the organic matter has been derived from marine phytoplankton and bacteria in the fine-grained sediment of Sogeun-ri, although terrestrial plant components have occasionally been incorporated to a significant degree in the coarse-grained sediment of Hwang-do. The concentration of sulfate in pore water is a constant tendency with regard to depth profile, while methane concentration appears to be slightly different with regard to depth profile at the two sites. Especially, the sum of bacteria fatty acid (a-C15:0 + i-C15:0 + C16:1w5) confirms that the these concentrations in Sogeun-ri are related to the degradation of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) compounds from the crude oil retained in the sediments as a result of the Hebei Spirit oil-spill accident in 2007. The methane-related microbial communities as shown by lipid biomarkers (crocetane, PMI) are larger in some sedimentary sections of Hwang-do than in the Sogeunri tidal flat. These findings suggest that methane production by microbiological processes is clearly governed by SRB activity along the vertical succession in organic-enriched tidal flats.

Effect of Water Chemistry Factors on Flow Accelerated Corrosion : pH, DO, Hydrazine (유동가속부식에 영향을 미치는 수화학 인자 : pH, 용존산소, 하이드라진)

  • Lee, Eun Hee;Kim, Kyung Mo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.280-287
    • /
    • 2013
  • Flow accelerated corrosion(FAC) of the carbon steel piping in pressurized water reactors(PWRs) has been major issue in nuclear industry. Severe accident at Surry Unit 2 in 1986 initiated the worldwide interest in this area. Major parameters influencing FAC are material composition, microstructure, water chemistry, and hydrodynamics. Qualitative behaviors of FAC have been well understood but quantitative data about FAC have not been published for proprietary reason. In order to minimize the FAC in PWRs, the optimal method is to control water chemistry factors. Chemistry factors influencing FAC such as pH, corrosion potential, and hydrazine contents were reviewed in this paper. FAC rate decreased with pH up to 10 because magnetite solubility decreased with pH. Corrosion potential is generally controlled dissolved oxygen (DO) and hydrazine in secondary water. DO increased corrosion potential. FAC rate decreased with DO by stabilizing magnetite at low DO concentration or by formation of hematite at high DO concentration. Even though hydrazine is generally used to remove DO, hydrazine itself thermally decomposed to ammonia, nitrogen, and hydrogen raising pH. Hydrazine could react with iron and increased FAC rate. Effect of hydrazine on FAC is rather complex and should be careful in FAC analysis. FAC could be managed by adequate combination of pH, corrosion potential, and hydrazine.

A Study on the Simplified Estimating Method of Off-site Consequence Analysis for Aqueous Ammonia (암모니아수의 농도별 간이 영향평가 방법 연구)

  • Jung, Yu-kyung;Heo, Hwajin;Yoo, Byungtae;Yoon, Yi;Yoon, Junheon;Ma, Byungchol
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.49-57
    • /
    • 2016
  • Aqueous ammonia is widely used in household cleaners, fertilizers and denitrification process. It is usually treated in concentrations from 10 % to 30 %, and release accidents have occurred frequently. In this study, we developed a simplified estimating method and equation to calculate threat zone easily in case of emergency due to release accident of aqueous ammonia. We calculated the consequence distance for toxic endpoints of aqueous ammonia(concentration 10 % ~ 30 %) at different puddle areas($1m^2{\sim}500m^2$) using the ALOHA program. Based on the result, we analyzed the relationship between concentration and puddle area with the threat zone and created the equation.