• Title/Summary/Keyword: Acceleration section

Search Result 206, Processing Time 0.029 seconds

Evaluation of Horizontal Curve Transition Section Using Lateral Acceleration Model (횡방향 가속도 모영을 이용한 곡선부 도로의 변이구간 평가에 관한 연구)

  • Park, Je-Jin;Kim, Yong-Gil;Ko, Yeong-Sun;Ha, Tae-Jun
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.135-143
    • /
    • 2008
  • According to the present highway design criteria, there are minimum standards which re ade from special design speeds. If some highways are satisfied the standards, it regards he highway as safety. In reality, however, most drivers drive a car at different speed compared with design speed. It is very dangerous for drivers especially at transition sections between curve and horizontal curve sections. Hence, this study calculated the rate of changing and horizontal acceleration at each section. Moreover, this study evaluated thesafety of design at curve transition sections and then calculated lateral acceleration and curve radii. This study found the minimum standards which are using as basic safety standards are not appropriate for measuring driver's safety.

  • PDF

Flow-Induced Vibration Signal Analysis of the FIV Test Loop (FIV 시험루프의 유동기인 진동 신호분석)

  • Lee, Kang-Hee;Kang, Heung-Soek;Yoon, Kyung-Ho;Song, Kee-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.601-606
    • /
    • 2004
  • Vibration spectrums of the test loop according to flow conditions were analyzed in order to identify the sources of vibration at peak frequencies. While a flow condition of the sweep test was changed by varying pump rotational speed from 450 rpm to 1500 rpm by the step 150 rpm, midspan acceleration of the test section in width-direction and dynamic pressure perturbation in the test section were measured. Other sources of vibration due to the flow structure interactions, such as acoustic resonance, blade pulsing frequency and bellows wrinkles, were investigated. Pressure perturbation in the section and acoustic resonance due to branch pipe give major effects to the vibration of the test section in high frequency range of 1.5 kHz to 2.8 kHz.

  • PDF

Method for Maneuver Monitoring with Vehicle Trajectory Reconstruction (차량 궤적 추정을 통한 운행 안전 모니터링 기법)

  • Heo, Geun Sub;Lee, Sang Ryong;Shin, Jin-Ho;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.1065-1071
    • /
    • 2012
  • In this paper, we proposed a method for vehicle monitoring with trajectory reconstruction. For safety, it is important to monitor the driving habit of driver. Every year, many accidents occur due to the reckless driving of the driver. Continuous monitoring of the status of commercial vehicles is needed for safety through the entire path from start point to the destination. To monitor the reckless driving, we try to monitor the trajectory of the vehicle by using vehicle's lateral acceleration data. Compared with steering angle and lateral acceleration, these resemble each other. So, we find the relationship of steering angle and acceleration, and find the global direction of vehicle. We find the position of non-GPS section with EKF (External Kalman Filter) and reconstruct the whole trajectory during vehicle driving.

Acceleration method of fission source convergence based on RMC code

  • Pan, Qingquan;Wang, Kan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1347-1354
    • /
    • 2020
  • To improve the efficiency of MC criticality calculation, an acceleration method of fission source convergence which gives an improved initial fission source is proposed. In this method, the MC global homogenization is carried out to obtain the macroscopic cross section of each material mesh, and then the nonlinear iterative solution of the SP3 equations is used to determine the fission source distribution. The calculated fission source is very close to the real fission source, which describes its space and energy distribution. This method is an automatic computation process and is tested by the C5G7 benchmark, the results show that this acceleration method is helpful to reduce the inactive cycles and overall running time.

Train-Structure Dynamic Interaction Analysis of The Bridge Transition Considering Track Irregularity (궤도틀림을 고려한 교대접속부의 열차상호동적거동해석)

  • Choi, Chan-Yong;Kim, Hun-Ki;Chung, Keun-Young;Yang, Sang-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, track dynamic interaction characteristics caused by the vehicle running through transitional section such as bridge abutments were studied using the finite element analysis program. The geometric condition of track was generated by trigonometric function and allowable maximum track irregularity is determined by KORAIL track maintenance criteria. The sub-infrastructure under rail fastener system was modelled by 3D solid elements. To reduce computational cost only half track line is numerically considered and the roller boundary condition was applied to each side of model. In this study, the vehicle-track dynamic interaction analysis was carried out for standard Korean transition section of concrete track and the dynamic behaviors were investigated. The dynamic characteristics considered are wheel load variation, vertical acceleration at body, and maximum Mises stress at each part of transitional section.

Development of Standard of Highway Curve Geometric Considering 3-D Acceleration (3차원 가속도를 고려한 도로곡선부 유형별 설계기준 제시)

  • Park, Jung-Ha;Park, Je-Jin;Park, Tae-Hoon;Ha, Tae-Jun
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.247-255
    • /
    • 2008
  • According to "A guide Book to Highway Design", most road elements are chosen based on a certain design speed in order to ensure obtaining safe and smooth traffic operating. However, road safety in practical way is corelative to not only all element of roads but also road shape, for example, between straight line and curves line and between curved lines. Also, it is relates to alignments such as horizontal alignment, vertical alignment, and cross section. That is, the practical road design should be examined in both sides of 3 dimension and consecutiveness as the practical road is a 3-dimensional successive object. The paper presents a concept for acceleration to evaluate consistency of road considering actual road shape on 3-dimension. Acceleration of vehicle is influential to road consistency based on running state of vehicle and state of drivers. Especially, the magnitude of acceleration is a quite influential element to drivers. Based on above, the acceleration on each point 3-D road can be calculated and then displacement can be done. Computation of acceleration means total calculation on each axis.

  • PDF

Fast MRI in Acute Ischemic Stroke: Applications of MRI Acceleration Techniques for MR-Based Comprehensive Stroke Imaging

  • You, Sung-Hye;Kim, Byungjun;Kim, Bo Kyu;Park, Sang Eun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.2
    • /
    • pp.81-92
    • /
    • 2021
  • The role of neuroimaging in patients with acute ischemic stroke has been gradually increasing. The ultimate goal of stroke imaging is to make a streamlined imaging workflow for safe and efficient treatment based on optimized patient selection. In the era of multimodal comprehensive imaging in strokes, imaging based on computed tomography (CT) has been preferred for use in acute ischemic stroke, because, despite the unique strengths of magnetic resonance imaging (MRI), MRI has a longer scan duration than does CT-based imaging. However, recent improvements, such as multicoil technology and novel MRI acceleration techniques, including parallel imaging, simultaneous multi-section imaging, and compressed sensing, highlight the potential of comprehensive MR-based imaging for strokes. In this review, we discuss the role of stroke imaging in acute ischemic stroke management, as well as the strengths and limitations of MR-based imaging. Given these concepts, we review the current MR acceleration techniques that could be applied to stroke imaging and provide an overview of the previous research on each essential sequence: diffusion-weighted imaging, gradient-echo, fluid-attenuated inversion recovery, contrast-enhanced MR angiography, and MR perfusion imaging.

Research of Performance for the Propulsion System of Maglev Vehicle (도시형 자기부상열차 추진특성에 관한 성능연구)

  • Kim, Bong-Seup;Koh, Joon-Kyun;Park, Do-Young;Kang, Byung-Gwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2342-2347
    • /
    • 2011
  • This paper introduces the performance test of the prototype vehicle, which will be in operation for Urban Maglev Program. While common trains with steel wheels use rotary induction motors for propulsion, maglev trains gain thrust force from linear induction motors maintaining the constant airgap with levitation electromagnets. Therefore, not only the behavior of the linear induction motor should be well understood, but also the way of propulsion that minimizes its effect on the levitation system should be took into account. Performance test procedures of maglev trains are proposed and carried out, and the characteristics of acceleration and deceleration are verified to agree with the design criteria. Tests are mainly performed on the linear section of the test line, and the driving characteristics on the section with a 6‰ incline are examined additionally. As a result, the performance of the prototype vehicle in the reverse operation can satisfy the requirement about the acceleration and deceleration, 4.0$m/s^2$. And, the design modifications of the commercial vehicle and the performance specifications required on the demonstration line are investigated.

  • PDF

Optimal Design of Sheath Flow Nozzle Acceleration Section for Improving the Focusing Efficiency (집속효율 향상을 위한 외장유동노즐 가속 구간의 최적설계 연구)

  • Lee, Jin-Woo;Jin, Joung-Min;Kim, Youn-Jea
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.763-772
    • /
    • 2019
  • There is a need to use sheath flow nozzle to detect bioaerosol such as virus and bacteria due to their characteristics. In order to enhance the detection performance depending on nozzle parameters, numerical analysis was carried out using a commercial code, ANSYS CFX. Eulerian-lagrangian approach method is used in this simulation. Multiphase flow characteristics between primary fluid and solid were considered. The detection performance was evaluated based on the results of flow field in nozzle chamber such as focusing efficiency and swirl strength. In addition, Latin hypercube sampling(LHS) of design of experiment(DOE) was used for generating a near-random sampling. Then, the acceleration section is optimized using response surface method(RSM). Results show that the optimized model achieved a 6.13 % in a focusing efficiency and 11.47 % increase in swirl strength over the reference model.

Numerical Investigation of Effect of Opening Pattern of Flow Control Valve on Underwater Discharge System using Linear Pump (유량제어밸브 개방형태가 선형펌프 방식 수중사출 시스템에 미치는 영향에 관한 수치적 연구)

  • Lee, Sunjoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.255-265
    • /
    • 2019
  • In the present study, the effect of opening patterns of a flow control valve on underwater discharge systems using a linear pump was investigated numerically. For that, a improved mathematical model was developed. The improvement is to separate a middle tank from a water cylinder because the cross-section area of the inlet of the middle tank is an important parameter. To validate the improved model, calculation results were compared with a previous study. The results showed that $2^{nd}$ order or more polynomial opening patterns had an advantage over ramp opening patterns. Higher an order of polynomial resulted in wider operating limits. An escape velocity and a maximum acceleration of underwater vehicle were affected by time derivative of the cross-section area of the flow control valve. Besides, as a velocity profile of the vehicle got closer to linearity, the escape velocity got faster and the maximum acceleration got smaller. And velocities of the vehicle and piston had similar variation trend.