• 제목/요약/키워드: Accelerated lifetime

검색결과 200건 처리시간 0.023초

마이카 고전압 커패시터의 환경시험과 가속 수명시험을 통한 신뢰성 평가 (Reliability assessment of mica high voltage capacitor through environmental test and accelerated life test)

  • 박성환;함영재;김정석;김경훈;소성민;전민석
    • 한국결정성장학회지
    • /
    • 제29권6호
    • /
    • pp.270-275
    • /
    • 2019
  • 마이카 커패시터는 세라믹 커패시터에 비해 내고충격 특성이 우수하여 다양한 유도무기체계의 고전압 기폭장치에 적용된다. 본 연구에서는 국산화된 마이카 고전압 커패시터의 고전압 기폭장치 적용을 위해 단자강도시험, 내습성시험, 열충격시험과 같은 환경시험과 함께 가속 수명 시험을 진행하였다. 마이카 고전압 커패시터의 고장모드는 절연저항 감소 및 이를 통한 절연 파괴이다. 가속수명모델의 중요 상수를 실험적으로 도출하였으며 전압계수 n 및 활성화 에너지 Ea는 각각 5.28 및 0.805 eV이었다. 가속모델식을 이용하여 도출한 가속계수는 496이었으며 가속수명시험을 통해 도출된 정상 사용 조건에서의 마이카 고전압 커패시터의 수명은 38.5년으로 기폭장치 적용에 문제가 없는 것으로 확인되었다.

가속 열 노화시험에 의한 탄성받침용 합성고무의 수명 예측에 관한 연구 (Accelerated Heat Aging Test for Predicting Useful Lifetime of Elastomeric Rearing)

  • 박광화;박준형;이하영;권영일
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제4권2호
    • /
    • pp.73-90
    • /
    • 2004
  • We performed the heat aging test to predict the useful lifetime of Elastomeric Bearing Chloroprene Rubber (CR) used for supporting bridge. During the test, we measured elongation that are influenced by temperature and aging time. The failure of a test piece is defined as the point at which the elongation reaches to 75% of the initial value. This failure criterion is based on KS F 4420: 1998 (Elastomeric Bearing for bridge). Through the accelerated heat aging test, we found that the Arrhenius relationship and the Weibull lifetime distribution are appropriate as the life-temperature relationship and lifetime distribution of the CR, respectively. Using the Arrhenius -Weibull model, the parameters of the model are estimated and the lifetime of the CR at use condition is predicted.

  • PDF

40-Gbps급 InGaAs 도파로형 포토다이오드의 신뢰성 실험 (Reliability testing of InGaAs Waveguide Photodiodes for 40-Gbps Optical Receiver Applications)

  • 주한성;고영돈;윤일구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.13-16
    • /
    • 2004
  • The reliability of 1.550m-wavelength InGaAs mesa waveguide photodiodes(WGPDs), which developed for 40-Gbps optical receiver applications, fabricated by metal organic chemical vapor deposition is investigated. Reliability is examined by both high-temperature storage tests and the accelerated life tests by monitoring dark current and breakdown voltage. The median device lifetime and the activation energy of the degradation mechanism are computed for WGPD test structures. From the accelerated life test results, the activation energy of the degradation mechanism and median lifetime of these devices in room temperature are extracted from the log-normal failure model by using average lifetime and the standard deviation of that lifetime in each test temperature. It is found that the WGPD structure yields devices with the median lifetime of much longer than $10^6$ h at practical use conditions. Consequently, this WGPD structure has sufficient characteristics for practical 40-Gbps optical receiver modules.

  • PDF

온도.비열 가속모형을 적용한 유압호스조립체 수명특성 연구 (A Study of the Life Characteristic of Hydraulic Hose Assembly by Adopting Temperature-Nonthermal Acceleration Model)

  • 이기천;김형의;조유희;심성보;김재훈
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제11권3호
    • /
    • pp.235-244
    • /
    • 2011
  • Hydraulic hose assemblies deliver a fluid power in various oil pressure equipment such as construction machinery, automobile, aircraft, industrial machinery, machine tools and machinery for ships. Also, they are widely used as pipes in oil pressure circuit. When we estimate their lifetime, it is essential to conduct an accelerated life test by choosing the factor that suits the usage condition of the test object since traditional test method for estimating lifetime under the influence of various external factors incurs hardship in terms of time and expenses. The objective of this study is to propose an acceleration model that takes both temperature and pressure without flexing condition into consideration. The lifetime is estimated by applying the proposed temperature-nonthermal acceleration model to the test data. And we compare the proposed temperature-nonthermal acceleration model and the accelerated life equation suggested by John(1994).

Solid State Drive(SSD)에 대한 가속열화시험 데이터 모델링 및 분석 (Modeling and Analysis of Accelerated Degradation Testing Data for a Solid State Drive (SSD))

  • 문병민;최영진;지유민;이용중;이근우;나한주;양중섭;배석주
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권1호
    • /
    • pp.33-39
    • /
    • 2018
  • Purpose: Accelerated degradation tests can be effective in assessing product reliability when degradation leading to failure can be observed. This article proposes an accelerated degradation test model for highly reliable solid state drives (SSDs). Methods: We suggest a nonlinear mixed-effects (NLME) model to degradation data for SSDs. A Monte Carlo simulation is used to estimate lifetime distribution in accelerated degradation testing data. This simulation is performed by generating random samples from the assumed NLME model. Conclusion: We apply the proposed method to degradation data collected from SSDs. The derived power model is shown to be much better at fitting the degradation data than other existing models. Finally, the Monte Carlo simulation based on the NLME model provides reasonable results in lifetime estimation.

텅스텐 백열전구의 필라멘트 단선에 대한 가속수명시험 (An Accelerated Life Test for Burnout of Tungsten Filament of Incandescent Lamp)

  • 김진우;신재철;김명수;이재국
    • 대한기계학회논문집A
    • /
    • 제29권7호
    • /
    • pp.921-929
    • /
    • 2005
  • This paper presents an accelerated life test for burnout of tungsten filament of incandescent lamp. From failure analyses of field samples, it is shown that their root causes are local heating or hot spots in the filament caused by tungsten evaporation and wire sag. Finite element analysis is performed to evaluate the effect of vibration and impact for burnout, but any points of stress concentration or structural weakness are not found in the sample. To estimate the burnout life of lamp, an accelerated life test is planned by using quality function deployment and fractional factorial design, where voltage, vibration, and temperature are selected as accelerating variables. We assumed that Weibull lifetime distribution and a generalized linear model of life-stress relationship hold through goodness of fit test and test for common shape parameter of the distribution. Using accelerated life testing software, we estimated the common shape parameter of Weibull distribution, life-stress relationship, and accelerating factor.

잉크젯 잉크의 수명예측을 위한 광열화 가속시험법에 관한 연구 (A Study on Accelerated Photo-Degradation Test for Lifetime Estimation of Ink-jet Ink)

  • 구현진;조항원;지병철
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제15권3호
    • /
    • pp.154-162
    • /
    • 2015
  • We have performed accelerated photo-degradation test using a 10-Sun level high irradiance $Weather-Ometer^{(R)}$ (10-Sun Ci5000) in an attempt to study acceleration and correlation between accelerated and service conditions for ink-jet ink. The accelerated test was used to predict lifetimes of ink-jet ink through the calculation of scaling factor for intensity of irradiance and duration of usage combined with estimation of lifetime distribution and inverse power model as a life-stress model. The lifetimes and acceleration factors for foreign and domestic inks were compared with each other. The results showed that the failure mechanisms and life-stress models for ink-jet ink were different among the color of ink which means that we might be in need of further study by color of inks.

가속 열 노화시험을 이용한 침매터널용 고무 씰 소재의 사용수명 예측 (Service life prediction of rubber seal materials for immersion tunnel by accelerated thermal degradation tests)

  • 박준형;박광화;박형근;권영일;김종호;성일경
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제9권4호
    • /
    • pp.275-290
    • /
    • 2009
  • This paper considers accelerated thermal degradation tests which are performed for rubber seal materials used for undersea tunnels constructed by immersion method. Three types of rubber seals are tested; rubber expansion seal, omega seal, and shock absorber hose. Main ingredient of rubber expansion seal is EPDM(Ethylene Propylene Diene Monomer) and that of both omega seal and shock absorber hose is SBR(Styrene Butadiene Rubber). The accelerated stress is temperature and an Arrhenius model is introduced to describe the relationship between the lifetime and the stress. From the accelerated degradation tests, dominant failure mode of the rubber seals is found to be the loss of elongation. The lifetime distribution and the service life of the rubber seals at use condition are estimated from the test results. The acceleration factor for three types of rubber seals are also investigated.

  • PDF

알루미늄 전해 커패시터의 신뢰성 향상을 위한 Derating 설계 연구 (Derating design approach of aluminum electrolytic capacitor for reliability improvement)

  • 민대준;김재중;손영갑;장석원;곽계달
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1712-1717
    • /
    • 2007
  • This paper presents a derating design approach for reliability improvement of an aluminum electrolytic capacitor. The capacitor, usually mounted in a printed circuit board, is used to stabilize the circuit. The main failure mechanism of interest is dry-up of the electrolyte that is mainly caused by two stresses-temperature and voltage. The lifetime under these stresses is modeled as a function of these stresses and time using accelerated life testing. Quantitative variation in the lifetime, according to variations in these stresses, is investigated to perform the derating design of the capacitor so that the stress levels are selected to achieve required reliability measures for reliability improvement. Moreover, sensitivity analysis shows which stress would be a more important factor determining the lifetime.

  • PDF

81미리 조명탄용 신관 KM84A1E1 지연제의 저장수명 예측 연구 (A Study of Storage Life Estimation for Delay System in the Fuse of 81mm Illuminating Projectile)

  • 장일호;김지훈;이우철;백승준;손영갑
    • 품질경영학회지
    • /
    • 제40권3호
    • /
    • pp.270-277
    • /
    • 2012
  • Purpose: In this paper, storage lifetime of delay system in the fuse of 81MM illuminating projectile is estimated. Methods: Accelerated degradation testings of tungsten delay system using both temperature and humidity stresses were performed, and then delay time increase of the systems were analyzed as degradation data based on distribution-based degradation processes. Results: The estimated storage lifetime of detonator is between 11.8 years and 17.6 years with each stress-life relationship. Conclusion: Comparing with field data, storage lifetime of 90% reliability is about 12 years.