• 제목/요약/키워드: Accelerated Life Tests : ALT

검색결과 30건 처리시간 0.018초

가속시험에 의한 릴레이의 기계적 수명평가에 관한 연구 (Mechanical Life Prediction of a Relay by Accelerated Life Tests)

  • 권영일;한인수
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2005년도 학술발표대회 논문집
    • /
    • pp.75-82
    • /
    • 2005
  • In this paper, accelerated life testing(ALT) method and procedures for a are developed and applied to assess the reliability of the product. Relay is a device that can open and close the electric circuit electrically and is used for protecting and controlling the load. In this study, an accelerated life test method for predicting the mechanical life of a relay is developed using the relationship between stresses, failure mechanism and life characteristics of products. Using the ALT method, we performed life tests and analyzed the tests results. The proposed method and procedures may de extended and applied to testing similar kinds of products to reduce test times and costs of the tests remarkably.

  • PDF

소형 계전기에 대한 가속수명시험 설계 및 분석 (Design and Analysis of Accelerated Life Tests (ALT) for Small Power Relays)

  • 권영일;유영철
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제4권1호
    • /
    • pp.1-14
    • /
    • 2004
  • Accelerated life test models and procedures are developed to assess the reliability of typical power relays. The main function of relays is to control high voltage circuits by operating low voltage circuits. The accelerated life test method and test equipments are developed using the relationship between stresses and life characteristics of the products. Using the developed accelerated life test method, the parameters of the ALT model and lifetime distribution are estimated and the reliability of the relays at use condition is assessed. The proposed accelerated life test method and procedure may be extended and applied to testing similar kinds of products to reduce test time and costs of the tests remarkably.

  • PDF

배전선로에 사용되는 전자개폐기(Magnetic Switch)의 가속수명시험에 관한 연구 (A Study on Accelerated Life Tests for Magnetic Switch Used in Distribution System)

  • 유행수;한규환;권영일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.536-540
    • /
    • 2002
  • In this paper, accelerated life test (ALT) models and procedures for Magnetic Switch (MS) are developed and applied to assure specified reliability of the products at development phase and guarantee the life of the products. Magnetic contactor that functions with over-current relay is called MS. Magnetic contactor closes and opens the motor load with ON/OFF switch of electronic contactor. It is also used for protecting and controlling the load. Magnetic contactor detects the over-current flow in the load with a over-current relay and disconnects the load by opening its control power. In this study, ALT models for MS are developed using the relationship between stresses and life characteristics of products. Using the ALT models, we performed life tests and analyzed the tests results. The proposed ALT models and procedures may be extended and applied to testing similar kinds of products to reduce test times and costs of the tests remarkably. Finally the results of this study will contribute to improving reliability of products and strengthening competitiveness of our products in world markets.

  • PDF

부품 및 벤치 실험을 통한 폴리우레탄 유압 왕복 실의 가속 실험 (Component and Bench Tests of Polyurethane Hydraulic Reciprocating Seal for Accelerated Life Testing)

  • 제영완;김한솔;김류운;정구현;안중혁;전홍규
    • Tribology and Lubricants
    • /
    • 제30권5호
    • /
    • pp.271-277
    • /
    • 2014
  • Hydraulic reciprocating seals have been widely used to prevent fluid leakage and to provide lubricant film on counter surface in various hydraulic system. The degradation of the seal may cause the catastrophic failure of the hydraulic system. To assess the durability of the seals and the compatibility with counter surface, accelerated life testing (ALT) has been typically employed from industry. However, ALT often takes up to a few months to cause a failure of the seals, and therefore, there is a need to develop more efficient ALT methods. In this work, the degradation characteristics of polyurethane (PU) seals from field test are investigated and they are compared to those from the component and bench tests, with an aim to contribute to the development of ALT method. From the comparison of the cross-sectional profiles of the sealing surface of the PU specimens before and after the tests, both wear and compression set are found to be responsible for degradation of the PU seals. It is also shown that the major wear mechanisms of the PU seals from the field is abrasive wear and formation of pits. The component and bench tests performed in this work are shown to reproduce such wear mechanisms, and therefore, those test methods can be used as an ALT method for PU seals. In particular, the bench test proposed in this work may be effectively utilized to assess the durability and the compatibility of the seals with the counter surface. The results of this work are expected to aid in the design of ALT for PU seal.

실용적 복합 가속수명시험 계획의 개발 (Planning Practical Multiple-Stress Accelerated Life Tests)

  • 배봉수;서순근
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권2호
    • /
    • pp.112-121
    • /
    • 2017
  • Purpose: The most previous works on designing accelerated life tests (ALTs) are focused on the application of a single stress. Because of the difficulty to obtain the sufficient information in a reasonable duration using single stress only, there is needed in practice to use multiple-stress ALTs frequently. This paper presents new practical plans with two stresses for Weibull distribution. Methods: The four-level practical plans based on rectangle test region are proposed and compared with the corresponding three-level statistically optimal plans. Sensitivity analyses for assumed design parameters and life-stress relationship are conducted. Results: A procedure to choose practical ALT plans is illustrated with a numerical example and guidelines for planning two-stress ALTs are provided. Conclusion: The proposed two-stress ALT plans on practical constraints to assess a quantile of Weibull lifetime distribution at the use condition are efficient and robust.

Necessity of step-stress accelerated life testing experiment at higher steps

  • Chandra, N.;Khan, Mashroor Ahmad;Pandey, M.
    • International Journal of Reliability and Applications
    • /
    • 제15권2호
    • /
    • pp.85-98
    • /
    • 2014
  • Accelerated life testing (ALT) is a well famous technique in life testing and reliability studies, this is particularly used to induce so high stress leading to failure of the highly reliable units quickly under stipulated duration of time. The step-stress ALT is one of the systematic experimental strategy of ALT applied to fail the units in steps. In this article we focus on two important issues (i) necessity of life tests at higher steps with relevant causes (ii) to develop a new optimum test plan for 3-step SSALT under the modified cumulative exposure model proposed by Khamis and Higgins (1998). It is assumed that the lifetime of test units follows Rayleigh distribution and its scale parameter at constant stress level is assumed to be a log-linear function of the stress. The maximum likelihood estimates of the parameters involved in the step-stress ALT model are obtained. A simulation study is performed for numerical investigation of the proposed new optimum plan 3-step, step-stress ALT. The necessity of the life test units at 3-step step-stress is also numerically examined in comparison to simple step-stress setup.

  • PDF

Optimum multi-objective modified step-stress accelerated life test plan for the Burr type-XII distribution

  • Srivastava, P.W.;Mittal, N.
    • International Journal of Reliability and Applications
    • /
    • 제15권1호
    • /
    • pp.23-50
    • /
    • 2014
  • This paper deals with formulation of optimum multi-objective modified step-stress accelerated life test (ALT) plan for Burr type-XII distribution under type-I censoring. Since it is impractical to estimate only one objective parameter after conducting costly ALT tests; also, it is not desirable to assume instantaneous changes in stress levels because of limited capacity of test equipments and the presence of undesirable failure modes, therefore, an optimum multi-objective modified step-stress ALT plan has been designed. The optimal test plan consists in determining the optimum low stress level and optimal time at which stress starts linearly increasing from low stress by minimizing the weighted sum of the asymptotic variances of the maximum likelihood estimator of quantile lifetimes at design constant stress. The method developed has been illustrated using an example. Sensitivity analysis has been carried out. Comparative study has also been done to highlight the merits of the proposed model.

  • PDF

불확정 모형하에서 가속수명시험의 최적 설계 (Optimal Design of Accelerated Life Tests under Model Uncertainty)

  • 서순근;하천수;김갑석
    • 품질경영학회지
    • /
    • 제29권3호
    • /
    • pp.49-65
    • /
    • 2001
  • This paper presents new compromise ALT plan which is applied to situations that true relationship between stress and parameters is not known exactly. The assumed failure distribution of this study is one of location-scale family, i. e., exponential, Weibull, and lognormal distributions which have been ones of the popular choices of failure distributions. The method of applying the stress is constant, and the censoring mechanism is Type I censoring. Compared with existing compromise plans under true simple linear model in terms of statistical efficiency, the efficiency of new compromise plan is better than the corresponding other compromise ones in most cases. For case when true model is quadratic, this plan can be used without any severe loss in statistical efficiency. The proposed new compromise ALT plan is illustrated with a numerical example and sensitivity analyses are conducted to study effects of pre-estimates of design parameters.

  • PDF

Accelerated life test plan under modified ramp-stress loading with two stress factors

  • Srivastava, P.W.;Gupta, T.
    • International Journal of Reliability and Applications
    • /
    • 제18권2호
    • /
    • pp.21-44
    • /
    • 2017
  • Accelerated life tests (ALTs) are frequently used in manufacturing industries to evaluate the reliability of products within a reasonable amount of time and cost. Test units are subjected to elevated stresses which yield quick failures. Most of the previous works on designing ALT plans are focused on tests that involve a single stress. Many times more than one stress factor influence the product's functioning. This paper deals with the design of optimum modified ramp-stress ALT plan for Burr type XII distribution with Type-I censoring under two stress factors, viz., voltage and switching rate each at two levels- low and high. It is assumed that usage time to failure is power law function of switching rate, and voltage increases linearly with time according to modified ramp-stress scheme. The cumulative exposure model is used to incorporate the effect of changing stresses. The optimum plan is devised using D-optimality criterion wherein the ${\log}_{10}$ of the determinant of Fisher information matrix is maximized. The method developed has been explained using a numerical example and sensitivity carried out.

  • PDF

Optimum time-censored ramp soak-stress ALT plan for the Burr type XII distribution

  • Srivastava, P.W.;Gupta, T.
    • International Journal of Reliability and Applications
    • /
    • 제15권2호
    • /
    • pp.125-150
    • /
    • 2014
  • Accelerated life tests (ALTs) are extensively used to determine the reliability of a product in a short period of time. Test units are subject to elevated stresses which yield quick failures. ALT can be carried out using constant-stress, step-stress, progressive-stress, cyclic-stress or random-stress loading and their various combinations. An ALT with linearly increasing stress is ramp-stress test. Much of the previous work on planning ALTs has focused on constant-stress, step-stress, ramp-stress schemes and their various combinations where the stress is generally increased. This paper presents an optimal design of ramp soak-stress ALT model which is based on the principle of Thermal cycling. Thermal cycling involves applying high and low temperatures repeatedly over time. The optimal plan consists in finding out relevant experimental variables, namely, stress rates and stress rate change points, by minimizing variance of reliability function with pre-specified mission time under normal operating conditions. The Burr type XII life distribution and time-censored data have been used for the purpose. Burr type XII life distribution has been found appropriate for accelerated life testing experiments. The method developed has been explained using a numerical example and sensitivity analysis carried out.

  • PDF