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Abstract. This paper deals with formulation of optimum multi-objective modified step-
stress accelerated life test (ALT) plan for Burr type-XII distribution under type-I 
censoring. Since it is impractical to estimate only one objective parameter after 
conducting costly ALT tests; also, it is not desirable to assume instantaneous changes in 
stress levels because of limited capacity of test equipments and the presence of 
undesirable failure modes, therefore, an optimum multi-objective modified step-stress 
ALT plan has been designed. The optimal test plan consists in determining the optimum 
low stress level and optimal time at which stress starts linearly increasing from low stress 
by minimizing the weighted sum of the asymptotic variances of the maximum likelihood 
estimator of quantile lifetimes at design constant stress. The method developed has been 
illustrated using an example. Sensitivity analysis has been carried out. Comparative study 
has also been done to highlight the merits of the proposed model. 

Key Words: Accelerated lfe test, Burr type-XII distribution, modified step-stress, multi-
objective optimization

NOTATIONS 
Stress rate, 0

0s Design stress 

1s Low stress 
*
1s Optimal low stress 

2s High stress 

1t Time at which stress changes from 0s  to 1s

2t Time at which stress starts increasing at the rate  from 1s
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*
2t Optimal time at which stress starts increasing at the rate  from 1s

3t Time at which stress changes from 1s  to 2s
Censoring time, 0

n Total number of test units  
cn Number of items censored 

burr(c, k, ) Burr type-XII distribution with parameters c, k,
c, k Shape parameters of Burr type-XII distribution, c 0,  k 0

Scale parameter of Burr type-XII distribution, 0

0 1,                Parameters of the inverse power law, 1 00,  
s(t) Stress at time t 
(t) Cumulative exposure at time t 

1G (t) 1 10 1 (1 )(1 )
00 0

1

e s (( t s ) s )
(1 )

2G (t) 10

1

10

1

e s (t t )

s

3G (t) 1 10 1 (1 )(1 )
2 10 1

1

e s (( t t s ) s )
(1 )

4G (t) 10

1

30

2

e s (t t )

s

1Q 10
0kce s

1R (t) 1 1

1 1

(1 ) (1 )
0 0 0 0

(1 ) (1 )
0 0

s ln s ( t s ) ln( t s )
( t s ) s

2R (t) 1 1

1 1

(1 ) (1 )
1 1 2 1 2 1

(1 ) (1 )
2 1 1

s lns ( t t s ) ln( t t s )
( t t s ) s

A(t) 1 1

1 1

(1 ) (1 ) 2
0 0 0 0

2 (1 ) (1 ) 2
1 0 0

(s ( t s ) (ln s ln( t s )) )1
(1 ) (( t s ) s )

B(t) 2 2
0

1 1 1 2 1 1 0 1 1
1 1

s 1G t A t ln G t G t lns R t
s 1

C(t) 1 1

1 1

(1 ) (1 ) 2
1 2 1 1 2 1

2 (1 ) (1 ) 2
1 2 1 1

(s ( t t s ) (ln s ln( t t s )) )1
(1 ) (( t t s ) s )

D(t) 2

2 3 3 0 2
1

1B t G t C t G t ln s R t
1
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E(t) 2
0

3 4
2

sD t G t ln
s

jA
j j 1 0 4 5t t t t ,  j 0,1, 2, 3, 4, where  t 0, t , t

j jI I t Indicator function:  

j
j

1,  if  t A ,  j 0,1,2,3,4
I (t)

0,  otherwise
^ Implies a ML estimate 
q Quantile
Asvar Asymptotic variance 
Ascov Asymptotic covariance 
Asvar* Asymptotic variance in case of multi-objective plan 
Asvarq Asymptotic variance in case of single-objective plan at quantile q 

1. INTRODUCTION

In today’s technological environment, it is often difficult to get the failure time data of the 
experimental units by testing them at normal stress. So, ALT is used to induce early 
failures by subjecting the experimental units to stress conditions that are more severe than 
those encountered in normal use condition. The failure times observed under overstress 
conditions are analyzed in terms of a model and then extrapolated to quantify reliability 
characteristics of the product under use condition, for example, estimate of probability of 
failure under use condition, mean or quantile life under use condition, projected return and 
warranty costs. An optimal ALT plan helps in determining the number of test units at each 
stress level, test duration, and other experimental variables and is designed to improve the 
accuracy of the reliability estimates. 
The stress can be applied in various ways, namely, constant, step, progressive, cyclic, 
random (see Nelson (1990)).  
The traditional constant-stress and step-stress testing assume instantaneous changes in the 
stress levels. However, from a practical point of view, it is desirable to increase the stress 
at some finite rate, because a sudden jump in stress level may cause a stress (thermal) 
shock or undesirable failure modes which may not appear under the normal use condition. 
In addition, it may be impossible for some test units to jump instantaneously from a lower 
stress level to a higher level. This has necessitated the use of modified constant-stress 
testing and modified step-stress testing in each of which stress from one level to another 
higher level is increased at a finite rate. In both the cases two or more stress levels higher 
than the normal stress level are employed. Park and Yum (1998) are the first to propose 
the optimum ALT plan under modified stress loading methods. 
In most of the existing ALT plans, the stress level changes instantaneously which is 
impractical. So, it is desirable to increase the stress at some finite rate, since a sudden 
jump in stress level may cause a thermal shock or undesirable failure modes which may 



26  Optimum multi-objective modified step-stress accelerated life test plan

not occur at the normal use condition. In addition, it may not be desirable for some test 
unit to jump instantaneously from a lower stress level to higher stress level. 
Further, most of the previous work on planning ALT has focused on a sole estimating 
objective, such as some specified 100pth quantile lifetime, the reliability of a product over 
some specified period of time, and accelerating factor. It is impractical to estimate only 
one objective parameter after conducting such costly tests. Optimum constant stress ALT 
test plans with multiple estimating objectives have been designed by Fei and Xu (2009). 
Since in practicing ALT one is interested in lower tail of the life distribution therefore, 
single objective optimal plan would separately minimize asymptotic variance of maximum 
likelihood (ML) estimate of log of quantiles 1%, 10% and 50%. It is impractical to obtain 
optimal plan using single objective after conducting such costly tests. Therefore, multi-
objective plan has been considered in this paper which can easily be reduced to single 
objective plan by taking relevant weight equal to one and rest of them equal to zero. 
Many life distribution models have been used in the literature to analyze an ALT data 
such as exponential distribution, normal distribution, Weibull distribution, log normal 
distribution, extreme value distribution, logistic distribution, log logistic distribution, 
truncated logistic distribution. The need to analyze an ALT data with so many life 
distribution models is necessitated since the use of correct life distribution model 
especially in the presence of a limited source of data – as typically occurs with modern 
devices having high reliability  helps in preventing the choice of unnecessary and 
expensive planned replacements. 
In this paper, we have obtained optimum time censored multi-objective modified step-
stress ALT test plan for Burr type-XII life distribution. The Burr type-XII life distribution 
has a non monotone hazard function, which can accommodate many shapes of hazard 
function. It has algebraic tails, which are effective for modeling failures that occur with 
less frequency than in corresponding models based on exponential tails. The Weibull and 
exponential life distributions are special limiting cases of this distribution (see Appendix). 
The log-logistic distribution is a particular case of this distribution. This distribution has 
been found appropriate for accelerated life testing experiments (see Soliman (2005)). 
Keats et al. (1998) have shown that the use of Burr type-XII model is appropriate for the 
data on times to breakdown of an insulating fluid between electrodes at a voltage of 34 
KV (minutes) given in Nelson (1982, pg. 105). Cook and Johnson (1986) have used the 
Burr model to obtain better fits to a uranium survey data set.  
The paper is organized as follows: 
ML estimate of model parameters and their asymptotic covariance matrix are obtained. 
The optimum stress change time and optimum lower level stress are found. The data 
analysis is presented to validate the model (design) formulated. The method developed has 
been illustrated using an example. Confidence intervals involving design parameters have 
also been obtained and sensitivity analysis carried out. Finally the proposed model has 
been compared with Park and Yum (1998) model using the simulated failure time data set. 
Using the same data set the proposed multi-objective plan has been compared with single-
objective plan with respect to changes in the values of the parameters, equal weights and 
unequal weights. 
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2. ASSUMPTIONS AND TEST PROCEDURE 

 Basic Assumptions 

a) The lifetimes of test units are independent and identically distributed. 
b) Failed items are not replaced during the test. 
c) Two stress levels higher than design stress 0(s ),  viz., the low stress level, 1s ,  and 

the high stress level, 2s ,  are employed, with 0s  and 2s  assumed to be pre-
specified. 

d) The censoring time  is pre-specified. 
e) For the effect of changing stress levels, a cumulative exposure model holds (see 

Nelson (1980)). 
f) Between any two stress levels, the stress is increased at the rate .
g)         The shape parameter “k” does not depend on the stress level. k is assumed to be 

known  for the sake of mathematical convenience.
h)    At any constant stress s, the lifetime of a unit follows a Burr type-XII model with 

scale  parameter (s) and shape parameters c and k, and the inverse power law 
holds for (s) :

1
0 0s(s) e .

s
(2.1)                                      

Test Procedure

The modified step-stress ALT proceeds as follows (Figure 2.1): 
a) n test units are put on test at time 0t .
b) The stress is increased at the rate until it reaches 1s , which occurs at time 

1 0
1

s s
t .

c) From 1t  to 2t , the stress is maintained at the level 1s .
d) At time 2t , the stress is increased again at the rate  until it reaches 2s , which

occurs at time 2 1
3 2

s st t .

e) After 3t ,  the stress is maintained at the level 2s until the censoring time  is 
reached. 
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Stress level

Time0t 0 1t 2t 3t

0s

1s

2s

Figure 2.1. Modified step-stress ALT 

3.  MODEL FORMULATION AND PARAMETER ESTIMATION 

Burr Type-XII Lifetime Distribution

The Burr type-XII distribution has a non-monotone hazard function, which can 
accommodate many shapes of hazard function. 
The probability density function (pdf), and cumulative distribution function (cdf), 
respectively, of Burr type-XII distribution are 

(k 1)c 1 ckc t tg(t;c,k, ) 1 , t 0,c 0,k 0, 0 ,                                                    

kctG(t;c,k, ) 1 1  , t 0,c 0,k 0, 0 ,                          (3.1)                                     

where c and  k are shape parameters, and  is scale parameter. The Burr type-XII 

distribution is unimodal, and its mode is 
1/c

mod e
c 1T   if  c 1;

ck 1
and the pdf is L-

shaped if c 1.
The reliability function and hazard function are given, respectively by 

kctR(t) 1 , t 0,c 0,k 0, 0  ,                                                                               

1c 1 ckc t th(t) 1 , t 0,c 0,k 0, 0 .                                                           
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The Burr type-XII distribution tends to Weibull distribution as k , such that 1/ck
(see Appendix A.1). Also, the Burr type-XII distribution tends to exponential distribution 
as k , such that 1/ck  and c 1 (see Appendix A.2), and log-logistic distribution 
is a particular case of this distribution, as for k = 1, the distribution reduces to log-logistic 
distribution. 
Soliman (2005), Abd-Elfattah et al. (2008), Lewis (1981) and Tadikamalla (1980) discuss 
the statistical and probabilistic properties of the Burr type-XII distribution and its 
relationship to other distributions used in reliability analysis. 

Life Distribution under Modified Step-Stress

Based on the inverse power law (see Assumption (h), (1)), we calculate the cumulative 
exposure function (t) at time t under stress level s  as follows: 
For 10 t t , we have 

1 10 1

1 1
0 0

1t t t 1
00 0

10 0 00 0

0

1

e s (( t s ) s )1 1 1(t) dy dy dy
(s(y)) (1 )s se es(y) y s

G (t) .                                                                                                                               
(3.2)                                    

For 1 2t t t , we have 
1
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1
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t t
0

1 1 1 1 2
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1

s1 1(t) dy (t ) dy (t ) e (t t ) (t ) G (t) .
(s(y)) sse

s
(3.3)                                    

For 2 3t t t , we have 

1 1
0 02 2

1 10 1

t t t

2 2
0 t t0 0

2 1
11
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2 2 3
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(3.4) 
For 3t t , we have 

1
0

1
03

t t
0

3 3 3 3 4
20 t 0

2

s1 1(t) dy (t ) dy (t ) e (t t ) (t ) G (t) .
(s(y)) sse

s
                                   

(3.5) 
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Then, cdf of the lifetime T of a unit tested under modified step-stress is 
F(t) G( (t)),                                                                 (3.6)                                    

where G (.) is the assumed cdf (see (3.1)) with the scale parameter  set equal to one 
(shown in Appendix A.3), (t) is the cumulative exposure (damage) model. Hence, using 
(3.1) and (3.6), the cdf is 

kcF(t) 1 1 (t)  .

Therefore,  
1 1

2 1 2

3 2 3

4 3

F (t),0 t t
F (t), t t t

F(t)
F (t), t t t
F (t), t t      ,

                                             (3.7) 

 where 
c k

1 1
c k

2 1 1 2
c k

3 1 1 2 2 3
c k

4 1 1 2 2 3 3 4

F (t) 1 (1 (G (t)) ) ,

F (t) 1 (1 (G (t ) G (t)) ) ,

F (t) 1 (1 (G (t ) G (t ) G (t)) ) ,

F (t) 1 (1 (G (t ) G (t ) G (t ) G (t)) ) .
The pdf is given by 

1 1

2 1 2

3 2 3

4 3

f (t),0 t t
f (t), t t t

f (t)
f (t), t t t
f (t), t t      ,

                                                                                                                                          
where 

1

1

1

c 1 c k 1
1 1 0 1 1

c 1 c k 1
2 1 1 1 2 1 1 21

c 1 c k 1
3 1 2 1 1 1 2 2 3 1 1 2 2 3

f (t) Q ( t s ) (G (t)) (1 (G (t)) ) ,

f (t) Q s (G (t ) G (t)) (1 (G (t ) G (t)) ) ,

f (t) Q ( t t s ) (G (t ) G (t ) G (t)) (1 (G (t ) G (t ) G (t)) ) ,

1 c 1 c k 1
4 1 1 1 2 2 3 3 4 1 1 2 2 3 3 42f (t) Q s (G (t ) G (t ) G (t ) G (t)) (1 (G (t ) G (t ) G (t ) G (t)) ) .

Likelihood Function 

The log-likelihood of a single observation at time t is 
3

0 1 j j 1 4 4
j 0

L( , ,c) L I ln f (t) I ln(1 F ( )) .                             (3.8) 
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Let the log-likelihood of unit j be jL . The log-likelihood, 0L , for n s-independent 
observations is, 

0 1 nL L ... L .                                                    (3.9)                                    
The first and second partial derivatives of (3.8) with respect to the model parameters for a 
single observation are given in the Appendix A.4. 

 Fisher Information Matrix 

The Fisher information is obtained by taking expectations of the negative of the second 
partial derivatives of the log (likelihood) function with respect to 0 1, ,  and c . The 
Fisher information matrix for an observation is 

2 2 2

2 0 1 00

2 2 2

0 1 20 1 11

2 2 2

20 1

L L LE     E E
c

L L LF( , ,c) E E     E
c

L L LE  E  E     
c c c

.

Since for some set of parameters { 0 1 0 1 2 1 2 3,  ,  s ,  s ,  s , ,  ,  k,  c,  t ,  t ,  t }; | F |  or 
variance function may be negative, therefore, we choose only that parametric set for 
which F 0  and variance function, is positive. A similar observation has been made by 
Balakrishnan et al. (2004). 
Since n units are tested, the Fisher information matrix for the plan with a sample of n s-
independent units is 

0 1F n F( , ,c) .
                                                                                                      

 Asymptotic Variance of ML Estimate of Log Quantile q at s0

For any plan, the asymptotic variance-covariance matrix of the model parameters is given 
by the inverse of the corresponding Fisher information matrix, that is,

0 0 1 0
1

0 1 1 1

0 1

ˆ ˆ ˆ ˆ ˆAsvar Ascov , Ascov ,c
ˆ ˆ ˆ ˆ ˆF Ascov , Asvar Ascov ,c  ,
ˆ ˆˆ ˆ ˆAscov ,c Ascov ,c Asvar c

where F is the Fisher information matrix. 
The asymptotic variance of the log of quantile q at design constant stress 0s  is 

q 0 1
ˆˆ ˆ ˆ ˆAsvar log Asvar h( , , )c ,

where 
1

0 1 ~ ~
ˆ ˆ ˆˆ ˆ ˆAs var h( , , ) H F H,c
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vector
~
Ĥ is a transpose of vector 

~
Ĥ,

1/k

0

ln 1 1 q
ˆ ˆh

ĉ
,

and

~
0 1

ˆ ˆ ˆh h hĤ .ˆ ˆ ĉ

Thus,

q 0 1
ˆˆ ˆ ˆ ˆAsvar log Asvar h( , , )c                                      (3.10) 

4. FORMULATION OF A MULTI-OBJECTIVE OPTIMIZATION PROBLEM

A variety of approaches can be used to solve the multi-objective optimization problem. 
One popular approach is to combine these objectives into one single composite objective 
so that the traditional mathematical programming methods can be applied (see Li and Liao 
(2008)). The later approach is used in this paper for the proposed plan. 
A modified step-stress test is specified by stress rate . The 1s and 2t  are determined by 
minimizing the weighted sum of asymptotic variances of ML estimators of quantile 
lifetimes at design constant stress. The asymptotic variance of the estimator is a function 
of 0 1 2 0 1 1 2s , s , s , , , , , c, k, t , t  and 3t .
Thus, the optimal design problem can be formulated as a nonlinear optimization problem: 

b

j j
j 1

0 1 2 1 2 3subject to  

Minimize z = w v

s s s  , t t t  ,                                   (4.1)
                                   

where
b

j
j 1

w 1, b is the number of quantile lifetimes, and using (3.10) 

jj q

1/k 1/k
1j j

2 2

ˆ v As var(log )

ln((1 q ) 1) ln((1 q ) 1)
1 0 F 1 0 , j = 1, 2..., b .    

c c

Since, the optimum modified step-stress test depends on 0 0 1 2s , , , , , c, k,  and s ,
one must obtain their values from experience, similar data, or a preliminary test. The 
optimum values of 1s  and 2t  can be found by using NMinimize option of Mathematica 6.
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In practicing ALT one is interested in the lower tails of the life distribution, i.e., early 
failures so 1%, 10% and 50% quantiles need to be considered. 
The weights are chosen according to needs of the plan designed. 

5. NUMERICAL EXAMPLE AND SENSITIVITY ANALYSIS 

In this section, a hypothetical modified step-stress ALT experiment is considered to 
illustrate the methods described in this paper with the following data set.  

0 1 0 2

1 2 3

n 35,  9.8,  4.7,  5.4,  s 30,  s 60,  10,  k 3,  c 1, b 3,
w w w 1/ 3 .

 Optimal Plan

Optimal 1s  and 2t   are obtained by minimizing the weighted sum of the Asvar of the ML 
estimate of the log of quantiles 1%, 10% and 50% of the distribution at design constant 
stress (see (4.1)) using the NMinimize option of Mathematica 6.0. They are obtained as 

* *
1 2s 38.2825 and t 7.24574 .

Thus, the optimum * *
1 3t  and t  are 

* *
* * *1 0 2 1
1 3 2

s s s st 0.845156 and t t 9.46181.

Table 5.1. Statistically optimal modified step-stress ALT plans with 
0 1 0 2 1 2 3n 35,  4.7,  5.4,  s 30,  s 60,  10,  k 3,  c 1,b 3,w w w 1/ 3

*
1s

*
2t

*As var
5 37.3838 5.73818 0.540229
7 37.9534 6.70461 0.448281
9 38.2147 7.13900 0.415200
50 38.5591 7.71454 0.350359
100 38.5141 7.69727 0.344256
200 38.4807 7.68049 0.341119
500 38.4572 7.66649 0.339143
1000 38.4491 7.66063 0.338448
10000 38.4418 7.65440 0.337796
100000 38.4411 7.65371 0.337728
1000000 38.4411 7.65364 0.337722
10000000 38.4411 7.65363 0.337721
100000000 38.4411 7.65363 0.337721
1000000000 38.4411 7.65363 0.337721

38.4411 7.65363 0.337721
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Table 5.1 shows that *As var  is not substantially affected by  when 50,  for the 
modified step-stress ALT plan. 

 Simulated Data

Type-I censored sample is simulated under modified step-stress test using (3.7) and is 
displayed in Table 5.2. 

Table 5.2. Simulated data set under type-I censoring 
( 0 1 0 2 cn 35,  9.8,  4.7,  5.4,  s 30,  s 60, 10,  k 3,  c 1, b 3, and n 7)

Intervals Failure Times 

10 t t 0.110754 

1 2t t t 1.09155, 3.0254, 7.18592, 5.86256, 5.84415, 2.21903, 4.40102, 1.95597, 
2.44792, 6.01589 

2 3t t t 9.25951, 8.58422, 9.45862, 8.25858, 8.37894, 8.45721, 8.58104, 9.3228, 
8.69834, 9.30489, 8.0258, 8.82896, 8.29714 

3t t 9.70105, 9.82526, 9.48501, 9.54313 

 ML Estimates of the Design Parameters

The ML estimates of the design parameters obtained using simulated data in Table 5.2 are: 
0 1ˆ ˆ ˆ6.42675,  8.2459,  c 0.817719 .

These are obtained by using the NMaximize option of Mathematica 6.0. 

Confidence Intervals 

The ML estimates 0 1
ˆ ˆ ˆ, ,andc  are approximately normally distributed in large samples, 

therefore ( 0 1
ˆ ˆ ˆ, , c ) ~ N (( 0 1, ,c ), 1F ). The two-sided 1100(1 ) %  approximate 

confidence interval for the parameter 0  is given by
1/0 02

ˆ ˆz ˆvar( ) , where 
1/2z  is 

the (1 1 /2)th quantile of a standard normal distribution , and 0ˆ ˆvar( )  is obtained by 

taking square root of the first diagonal element of 1F . Similarly two-sided 1100(1 ) %
approximate confidence interval for the parameter 1  and c can be obtained. The main 
disadvantage of approximate 1100(1 ) %  confidence interval is that it may yield 
negative lower bound though the parameter takes only positive values. In such a case the 
negative value is replaced by zero. Alternatively, Escobar and Meeker (1998) have 
suggested the use of a log transformation to obtain approximate confidence intervals for 
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the parameters that take positive values. Thus, the approximate two sided 1100(1 ) %
confidence intervals for 1  and c are 

1 11 1 1/2 1 /2
1 1

ˆ ˆ ˆˆ[ ] [ ]/ /z ˆˆ var( )var( zˆ ˆ)e e, ,

and

1 1/2 /2ˆ ˆ ˆ ˆ[ z c / c] [z c / c]
ˆ ˆc e , c e

ˆ ˆvar( ) var( )
 , 

respectively. 

The 1100(1 ) % confidence intervals for the parameters are obtained using the inverse 

of the observed Fisher information matrix 1F̂ and is given by:

1
2.0651 3.18914 0.336455

F̂ 3.18914 5.22423 0.507458
0.336455 0.507458 0.0662519

.

The observed value of 1F , that is, 1F̂ , is determined by substituting the estimated 
parameters 0 1ˆ ˆ ˆ,  and c  for the true parameters in the asymptotic covariance matrix. The 

square root of a diagonal element of 1F̂  gives standard error of an estimator. 
 Thus, the 95% approximate confidence intervals for 0 1, , and c,  respectively, are 

0 13.61015   9.24336,   4.78952   14.1966,  and  0.44123  c 1.51545 .

 Sensitivity Analysis

To use an optimum test plan, one needs estimates of the design parameters 0 1, , and c .
These estimates sometimes may significantly affect the values of the resulting decision 
variables; therefore, their incorrect choice may give a poor estimate of the quantile at 
design constant stress. Hence, it is important to conduct sensitivity analysis to evaluate the 
robustness of the resulting ALT plan. 

The percentage deviations of the optimal settings are measured by 
** *

*
| Z Z |PD 100,

Z
 where *Z  is the setting obtained with the given design 

parameters, and **Z  is the one obtained when the parameter is misspecified. Table 5.3 
shows the optimal test plans for various deviations from the design parameter estimates. 
The results show that the optimal plan is robust to the small deviations from baseline 
parameter estimates. 
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Table 5.3. Sensitivity analysis with * *
1 2s 38.2825 and t 7.24574

Parameter % change 1s 2t PD%
0

ˆ +0.1% 38.2914 7.24647 0.2060810 

0
ˆ –0.1% 38.2736 7.24502 0.2049600 

1
ˆ +0.1% 38.2824 7.24593 0.0673720 

1
ˆ –0.1% 38.2826 7.24555 0.0675216 
ĉ  +0.1% 38.2838 7.24585 0.1402610 
ĉ  –0.1% 38.2813 7.24563 0.1407650 

 Comparative Study

In this section, comparative study has been carried out to highlight the merits of the 
proposed plan. In Table 5.4, the proposed modified step-stress ALT model have been 
compared with the one designed by Park and Yum (1998) in terms of likelihood functions 
using the hypothetical failure time data set under modified step-stress ALT with type-I 
censoring given in Table 5.2. Table 5.5 depicts comparison of multi-objective plan and 
single-objective plan with respect to change in parameters and Table 5.6 shows the 
comparison of multi-objective plan with equal weights and unequal weights. 

Table 5.4. Comparative study of modified step-stress ALT models 
ALT model Log-likelihood function 
Proposed Model  – 72.6653
Park and Yum (1998) model – 72.9099

Table 5.4 shows that the proposed model performs better than the other modified step-
stress ALT models; exist in the literature for the given data set.  

Table 5.5. Comparison of multi-objective plan and single-objective plan with respect to 
change in parameters ( 0 2n 35,  9.8,  s 30,  s 60,  10,  k 3,

1 2 3b 3,w w w 1/ 3)

0 1 c *As var 0.01As var 0.1As var 0.5As var
14.2 15.4 1.0 48.8589 28.8940 48.7402 59.9847 
14.7 15.4 1.0 81.9250 61.4429 81.8324 99.3590 
15.2 15.4 1.0 138.773 106.390 138.745 166.752 
14.7 15.9 1.0 60.9606 45.3858 60.8740 74.0811 
14.7 16.4 1.0 45.6476 26.5458 45.6476 55.6625 
14.7 15.4 1.5 486.695 326.862 488.407 544.094 
14.7 15.4 2.0 2685.71 1658.36 2685.71 2903.62 
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Table 5.5 shows that multi-objective plan yields smaller variance as compared to single-
objective plan at 50% quantile. 

Table 5.6. Comparison of multi-objective plan with equal weights and unequal weights 
( 0 1 0 2n 35,  9.8,  14.7,  15.4,  s 30,  s 60,  10,  k 3,  c 1,b 3).

w1 w2 w3
*As var

0.33 0.33 0.33 81.9250
0.50 0.40 0.10 74.2890
0.50 0.10 0.40 80.1030
0.10 0.40 0.50 89.1038
0.40 0.10 0.50 83.7835
0.40 0.50 0.10 76.2293
0.10 0.50 0.40 87.3294

Table 5.6 shows that multi-objective plan with equal weights yields smaller variance as 
compared to multi-objective plan with unequal weights when more weight is given to 
asymptotic variance corresponding to quantile 50% and when more weight is given to 
asymptotic variance corresponding to quantile 10% and next higher weight is given to 
asymptotic variance corresponding to quantile 50%. 

6. CONCLUDING REMARKS 

In contrast to traditional step-stress loading where stress levels are changed 
instantaneously, in modified step-stress loading stress from one level to another higher 
level is increased at a finite rate thereby preventing occurrence of a stress (thermal) shock 
or undesirable failure modes which may not appear under the normal operating condition. 
In this paper, an optimum time censored multi-objective modified step-stress ALT test 
plan for Burr type-XII life distribution has been obtained.  The Burr type-XII life 
distribution model can be widely and effectively used in reliability applications because it 
has many different forms of reliability function and hazard function. The optimal test plan 
consists in determining the optimum low stress level and optimal time at which stress 
starts linearly increasing from low stress by minimizing the weighted sum of the 
asymptotic variances of the maximum likelihood estimator of quantile lifetimes at design 
constant stress.  The procedure developed has been explained using an example and 
sensitivity analysis carried out. The results of sensitivity analysis show that optimum plan 
is robust for small deviations in the true values of the model parameters. Comparative 
study has also been carried out. 
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APPENDIX

A.1.
The Burr type-XII distribution tends to the Weibull life distribution as k , such that 

1/ck .
Consider, the cdf of Burr type-XII distribution as, 

kctG(t;c,k, ) 1 1 , t 0,c 0,k 0, 0 .

Let 1/ck .Therefore, we get,
kc

1/c

kc

tG(t;c,k) 1 1 , t 0,c 0,k 0
k

t1 1 , t 0,c 0,k 0
k

c

2c c

c 2
c

t1 exp k ln 1 , t 0,c 0,k 0
k

t 1 t1 exp k , t 0,c 0,k 0
k 2 k

(t )1 exp t , t 0,c 0,k 0 .
2k

As, k , we get, 
cG(t;c,k) 1 exp( t ), t 0,c 0  which is the cdf of Weibull distribution. 

A.2.
The Burr type-XII distribution tends to the exponential life distribution as k , such 

that 1/ck  and c 1 .
Consider, the cdf of Burr type-XII distribution as, 

kctG(t;c,k, ) 1 1 , t 0,c 0,k 0, 0 .

Let 1/ck  and c 1.Therefore, we get,
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k

2

2

tG(t;c,k) 1 1 , t 0,k 0
k

t1 exp k ln 1 , t 0,k 0
k

t 1 t1 exp k , t 0,k 0
k 2 k

(t)1 exp (t) , t 0,k 0 .
2k

As k , we get, 
G(t;c,k) 1 exp( t), t 0  which is the cdf of exponential distribution. 

A.3.
The reason for setting 1  is explained as follows: 
Consider the cdf of Burr type-XII distribution as 

kc

kc

tG(t;c,k, ) 1 1 , t 0,c 0,k 0, 0

(t)G( (t);c,k, ) 1 1 , t 0,c 0,k 0, 0 .

For 1

c k

kc
1 1

kc
1 2 1 2

kc
2 3 2 3

G( (t)) G( (t);c,k,1)

1 (1 ( (t)) ) , t 0,c 0,k 0

1 1 G (t)            ;0 t t ; c, k 0   (Using (2.2))

1 1 (t ) G (t) ; t t t ; c, k 0   (Using (2.3))

1 1 (t ) G (t) ; t t t ; c, k 0   (Using (2.4))

1
kc

3 4 31 (t ) G (t) ; t t ; c, k 0   (Using (2.5))

1 1

2 1 2

3 2 3

4 3

F (t) ; 0 t t
F (t) ; t t t
F (t) ; t t t
F (t) ; t t

F(t) .
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It is necessary to set 1, as then only F(t) will be equal to G( (t)) and linear cumulative 
exposure model will be hold. 

A.4.
Calculations of derivatives of the log-likelihood and the elements of Fisher information 
matrix given in section 3 have been shown below:  
The first partial derivatives are, 

c c3
0 1 1 1 1 2

j c c0 j 0 1 1 1 2

c c
2 1 1 2 2 3 3 1 1 2 2 3 3 4

c c
1 1 2 2 3 1 1 2 2 3 3 4

I (G (t)) I (G (t ) G (t))L c I (k 1)c
(1 (G (t)) ) (1 (G (t ) G (t)) )

I (G (t ) G (t ) G (t)) I (G (t ) G (t ) G (t ) G (t))
(1 (G (t ) G (t ) G (t)) ) (1 (G (t ) G (t ) G (t ) G (t))

c
4 1 1 2 2 3 3 4

c
1 1 2 2 3 3 4

)

I kc(G (t ) G (t ) G (t ) G ( )) ,                                                                   (A1)
(1 (G (t ) G (t ) G (t ) G ( )) )

c
1

0 0 0 1 c1 1 1

(k 1)c(G (t))L 1I clns ln( t s ) (c 1) R (t)
1 1 (G (t))

1 2
0 1 1 0 1 1 1

1 1 1 2 1

c
1 1 1 1 2 1 1

1 1c1 1 2 1 1 1 21 1 2

(c 1) ln s G (t)1 1ln s R (t) I c ln s ln s (c 1) R (t )
1 G (t ) G (t) 1

G (t ) (k 1)c(G (t ) G (t)) G (t )1 R (t )
G (t ) G (t) 1 G (t ) G1 (G (t ) G (t)) 0

1 2 1 2 2
2 0 2 1

1 1 2 1 1 2 2 3 1

1 1 3 1 1 1 1 2 3

1 1 2 2 3 1 1 2 2

ln s
(t)

ln s G (t) (c 1) ln s G (t ) c 1I cln s ln( t t s )
G (t ) G (t) G (t ) G (t ) G (t) 1

G (t ) G (t) (c 1)(R (t )G (t ) R (t)G (t))
G (t ) G (t ) G (t) G (t ) G (t ) G3

c
1 1 2 2 3 1 1 3

c 1 1 1 2 2 31 1 2 2 3

1 1 1 1 2 3 1 2 2
0 3 0 2

1 1 2 2 3

(t)

(k 1)c(G (t ) G (t ) G (t)) G (t ) G (t)1
1 G (t ) G (t ) G (t)1 (G (t ) G (t ) G (t))

R (t )G (t ) R (t)G (t) ln s G (t ) ln s I c ln s ln s
G (t ) G (t ) G (t)
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1 1 3 31 2 2 2 4

1 1 2 2 3 3 4 1 1 1 2 2 3 3 4

1 1 1 1 2 3 3 3 1 1 2 2 3 3

1 1 2 2 3 3 4

G (t ) G (t )(c 1)(ln s G (t ) ln s G (t)) c 1
G (t ) G (t ) G (t ) G (t) 1 G (t ) G (t ) G (t ) G (t)

(c 1)(R (t )G (t ) R (t )G (t )) (k 1)c(G (t ) G (t ) G (t )
G (t ) G (t ) G (t ) G (t)

c
4

c
1 1 2 2 3 3 4

1 1 3 3

1 1 2 2 3 3 4 1

1 1 1 1 2 3 3 3 1 2 2 2 4
0

1 1 2 2 3 3 4

4 1

G (t))
1 (G (t ) G (t ) G (t ) G (t))

G (t ) G (t ) 1
G (t ) G (t ) G (t ) G (t) 1

R (t )G (t ) R (t )G (t ) (ln s G (t ) ln s G (t)) ln s
G (t ) G (t ) G (t ) G (t)

I kc(G c
1 2 2 3 3 4 1 1 3 3

c 1 1 2 2 3 3 41 1 2 2 3 3 4

1 1 1 1 2 3 3 3 1 2 2 2 4
0

1 1 1 2 2 3 3

(t ) G (t ) G (t ) G ( )) G (t ) G (t )
G (t ) G (t ) G (t ) G ( )1 (G (t ) G (t ) G (t ) G ( ))

R (t )G (t ) R (t )G (t ) (ln s G (t ) ln s G ( ))1 ln s
1 G (t ) G (t ) G (t ) G4

,                 (A2)
( )

3
j

0 1 1 1 1 2 2 1 1 2 2 3
j 0

c
1 1 1 2 1 1 2

3 1 1 2 2 3 3 4 c
1 1 2

c
0 1 1 2 1 1 2

c
1

IL I ln G (t) I ln(G (t ) G (t)) I ln(G (t ) G (t ) G (t))
c c

I ln(G (t ) G (t))(G (t ) G (t))I ln(G (t ) G (t ) G (t ) G (t))
1 (G (t ) G (t))

I ln G (t)(G (t)) I ln(G (t ) G (
1 (G (t))

c
2 3 1 1 2 2 3

c
1 1 2 2 3

c
3 1 1 2 2 3 3 4 1 1 2 2 3 3 4

c
1 1 2 2 3 3 4

t ) G (t))(G (t ) G (t ) G (t))
1 (G (t ) G (t ) G (t))

I ln(G (t ) G (t ) G (t ) G (t))(G (t ) G (t ) G (t ) G (t)) (k 1)
1 (G (t ) G (t ) G (t ) G (t))

c
4 1 1 2 2 3 3 4 1 1 2 2 3 3 4

c
1 1 2 2 3 3 4

I k ln(G (t ) G (t ) G (t ) G ( ))(G (t ) G (t ) G (t ) G ( )) ,            (A3)
1 (G (t ) G (t ) G (t ) G ( ))

The likelihood equations are obtained by setting (A1) – (A3) to zero. 
The parameter values that solve “these equations summed over all test units” are the ML 
estimates. As the system of likelihood equations has no closed form solution in 

0 1, , and c, therefore the maximum likelihood estimates 0 1
ˆ ˆ, ,  and ĉ  are obtained by 

maximizing (3.9) using NMaximize option of Mathematica 6. 
The second partial derivatives are 
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c c2
2 0 1 1 1 1 2

2 c 2 c 2
0 1 1 1 2
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2 1 1 2 2 3 3 1 1 2 2 3 3 4

c 2
1 1 2 2 3 1 1 2 2 3 3 4
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2 c
4 1 1 2 2 3 3 4

c 2
1 1 2 2 3 3 4

) )
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(1 (G (t ) G (t ) G (t ) G ( )) )

c c2
2 0 1 1 1 1 2

0 1c 2 c 21 0 11 1 1 2

1 1 1 2
0 1 1

1 1 1 2 1 1 2

2

I (G (t)) I (G (t ) G (t))L 1(k 1)c ln s R (t)
1(1 (G (t)) ) (1 (G (t ) G (t)) )

G (t ) ln s G (t)1ln s R (t )
1 G (t ) G (t) G (t ) G (t)

I c
1 1 2 2 3 2 2

0c 2 1 1 2 2 3 11 1 2 2 3

1 1 1 1 2 3 1 2 2

1 1 2 2 3

c
3 1 1 2 2 3 3 4

(G (t ) G (t ) G (t)) G (t ) 1ln s 1
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R (t )G (t ) R (t)G (t) ln s G (t )
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I (G (t ) G (t ) G (t ) G (t))
(1

1 1 3 3
c 2 1 1 2 2 3 3 41 1 2 2 3 3 4

1 1 1 1 2 3 3 3 1 2 2 2 4
0

1 1 1 2 2 3 3 4

2
4 1 1

G (t ) G (t )
G (t ) G (t ) G (t ) G (t)(G (t ) G (t ) G (t ) G (t)) )

R (t )G (t ) R (t )G (t ) (ln s G (t ) ln s G (t))1 ln s
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2 2 3 3 4 1 1 3 3
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0

1 1 1 2 2 3 3 4

(t ) G (t ) G ( )) G (t ) G (t )
G (t ) G (t ) G (t ) G ( )(1 (G (t ) G (t ) G (t ) G ( )) )

R (t )G (t ) R (t )G (t ) (ln s G (t ) ln s G ( ))1 ln s
1 G (t ) G (t ) G (t ) G (
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)
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0 1 1 1 1 1 2 1 1 2

c 2 c 20 0 1 1 1 2
c

2 1 1 2 2 3 1 1 2 2 3
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1 1 2 2 3
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)

The elements of the Fisher information matrix for an observation are the negative 
expectations of these second partial derivatives (A4 – A9), and are obtained with the aid 
of : 

4 4E I (t) 1 F ( ),
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LE 0,  for i 0,1, LE 0.
c
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