• Title/Summary/Keyword: Acc

Search Result 1,213, Processing Time 0.022 seconds

Modeling the transverse connection of fully precast steel-UHPC lightweight composite bridge

  • Shuwen Deng;Zhiming Huang;Guangqing Xiao;Lian Shen
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.391-404
    • /
    • 2023
  • In this study, the modeling of the transverse connection of fully precast steel-UHPC (Ultra-High-Performance Concrete) lightweight composite bridges were conducted. The transverse connection between precast components plays a critical role in the overall performance and safety of the bridge. To achieve an accurate and reliable simulation of the interface behavior, the cohesive model in ABAQUS was employed, considering both bending-tension and compression-shear behaviors. The parameters of the cohesive model are obtained through interface bending and oblique shear tests on UHPC samples with different surface roughness. By validating the numerical simulation against actual joint tests, the effectiveness and accuracy of the proposed model in capturing the interface behavior of the fully precast steel-UHPC lightweight composite bridge were demonstrated.

An Automated Essay Scoring Pipeline Model based on Deep Neural Networks Reflecting Argumentation Structure Information (논증 구조 정보를 반영한 심층 신경망 기반 에세이 자동 평가 파이프라인 모델)

  • Yejin Lee;Youngjin Jang;Tae-il Kim;Sung-Won Choi;Harksoo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.354-359
    • /
    • 2022
  • 에세이 자동 평가는 주어진 에세이를 읽고 자동으로 평가하는 작업이다. 본 논문에서는 효과적인 에세이 자동 평가 모델을 위해 Argument Mining 작업을 사용하여 에세이의 논증 구조가 반영된 에세이 표현을 만들고, 에세이의 평가 항목별 표현을 학습하는 방법을 제안한다. 실험을 통해 제안하는 에세이 표현이 사전 학습 언어 모델로 얻은 표현보다 우수함을 입증했으며, 에세이 평가를 위해 평가 항목별로 다른 표현을 학습하는 것이 보다 효과적임을 보였다. 최종 제안 모델의 성능은 QWK 기준으로 0.543에서 0.627까지 향상되어 사람의 평가와 상당히 일치한다.

  • PDF

Simulating the performance of the reinforced concrete beam using artificial intelligence

  • Yong Cao;Ruizhe Qiu;Wei Qi
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.269-286
    • /
    • 2023
  • In the present study, we aim to utilize the numerical solution frequency results of functionally graded beam under thermal and dynamic loadings to train and test an artificial neural network. In this regard, shear deformable functionally-graded beam structure is considered for obtaining the natural frequency in different conditions of boundary and material grading indices. In this regard, both analytical and numerical solutions based on Navier's approach and differential quadrature method are presented to obtain effects of different parameters on the natural frequency of the structure. Further, the numerical results are utilized to train an artificial neural network (ANN) using AdaGrad optimization algorithm. Finally, the results of the ANN and other solution procedure are presented and comprehensive parametric study is presented to observe effects of geometrical, material and boundary conditions of the free oscillation frequency of the functionally graded beam structure.

On the dynamics of hockey stick after contacting with the ball

  • Yue Jia
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.287-301
    • /
    • 2023
  • Hockey games attracts many fans around the world. This game requires a specific type of ball and a stick for controlling the motion and trace of the ball. This control of motion involves hitting the ball which is a direct intensive dynamic loading. The impact load transferred directly to the hand of the player and in the professional player may cause long term medical problems. Therefore, dynamic motion of the stick should be understood. In the current study, we analyze the dynamic motion of a hockey stick under impact loading from a hockey ball. In doing so, the stick geometry is simplified as a beam structure and quasi-2D relations of displacement is applied along with classical linear elasticity theory for isotropic materials. The governing equations and natural boundary condition are extracted using Hamilton's principle. The final equations in terms of displacement components are solved using Galerkin's numerical method. The results are presented using indentation and contact force values for variations of different parameters.

Anti-tank impact absorption with a reinforced concrete plate design

  • Berivan Yilmazer Polat;Sedat Savas;Alper Polat
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.229-239
    • /
    • 2023
  • Anti-tank weapons are among the infantry weapons used by the armies of many countries. Anti-tank rockets and explosives such as TNT, generally used for armour piercing, are also frequently used in terrorist attacks. These attacks damage the protection facilities built from reinforced concrete. Rockets or similar explosives' rapid speed and burst temperatures pierce reinforced concrete during strikes, resulting in casualties and damage to crucial strategic structures. This study aimed to devise an economic and applicable reinforced concrete plate that could absorb the impact of anti-tank rockets and Trinitrotoluene (TNT) type explosives. Therefore, 5 different samples, produced from C50 reinforced concrete and 150×150 cm in size, were formed by combining plates of different numbers and thicknesses. Also, a sample, which was a single thick plate, was prepared. In destructive testing, Rocket Propelled Grenade (RPG-7) was used as the anti-tank rocket launcher. As a result of this study, the impact damage was reduced with hollow concrete plate geometries, and recommendations were developed for complete prevention.

Polymers in construction: A brief review authors

  • Khadimallah, Mohamed Amine;Harbaoui, Imene;Hussain, Muzamal;Qazaq, Amjad;Ali, Elimam;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.113-121
    • /
    • 2022
  • Polymers, particularly plastics, have been widely seen as an existential risk to the environment due to their contribution to pollution, carbon emissions and climate change. Many argue that it is possible to substantially ease the threat of plastics by engaging the public in reducing their use in day-to-day life and implementing efficient domestic waste management strategies. On the other hand, polymers and plastics in building and construction are considerably less problematic, if not attractive. In fact, the applications of polymers in construction have been continuously expanding. This is partly due to the developments made in this area being implemented within a sustainable development strategy. In this paper, the main applications of polymers in construction have been revisited and an overview of the research topics in each application has been briefly presented.

Analysis of mechanical properties of microtubules under combined effects of surface and body forces for free and embedded microtubules in viscoelastic medium

  • Farid, Khurram;Taj, Muhammad
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.255-264
    • /
    • 2022
  • Vibration is expected to occur in microtubules as tubular heterodimers. They oscillate like electric dipoles. Several research studies have estimated a frequency of vibration using the orthotropic model, a beam or rod like models and shell models, considering the surface forces. The effects of body forces on the dynamics of the microtubules were not yet taken into account. This study seeks to capture the body force effects on the vibration modes generated and on the corresponding frequency for microtubules. An orthotropic elastic shell model for the structural details of microtubules is used for the analysis. The tests are conducted out for microtubules, exposed to electro-magnetic and gravitational forces, the transverse vibration, radial mode vibration, and axial mode of vibration have accomplished. We therefore, evaluate and compare microtubules' frequencies with prior results of vibration frequency without the effects of body force.

Experimental-numerical study on the FRP-strengthened reinforced concrete beams with a web opening

  • Abdullah Rafiq Safiaa;Suryamani Behera;Rimen Jamatia;Rajesh Kumar;Subhajit Mondal
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.321-331
    • /
    • 2023
  • The effect of fibre-reinforced polymer (FRP) strengthening on the behaviour of reinforced concrete (RC) beams with web openings is studied. It has been observed that the load-carrying capacity and deflection in the presence of an opening reduced by approximately 50% and 75%, respectively. Three-dimensional nonlinear finite models are first validated with the results obtained from experimental data. Thereafter, a series of parametric studies are conducted for the beam with an opening. In the study, it is observed that a square opening shape is critical in comparison to the elliptical and circular-shaped opening. The web opening located near the support is found to be critically compared to the opening in the middle of the beam. Given the critical opening shape situated at the critical location, the increase in FRP layers enhances the load-deformation behaviour of the FRP-wrapped RC beam. However, the load-deformation responses are not significantly improved beyond a certain threshold value of FRP layers.

Strength prediction of steady laminar fluid with normal velocity distribution: A simplified truncation technique

  • Mohamed A. Khadimallah;Muzamal Hussain;Elimam Ali;Abdelouahed Tounsi
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.313-319
    • /
    • 2023
  • In this paper, the analytic solution has been found by using truncation approach. With the help of suitable substitution, different physical parameters are yielded in their non-dimensional form. The governing boundary layer partial differential equations are reduced to a set of ordinary ones by using appropriate similarity transformations. The velocity profile across the domain have also been taken into account. The effect normal velocity profiles buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. It is found that the normal velocity profiles rise with the buoyancy parameter and for the slip parameter. It is observed that the normal velocity profile decreases with the increase of shrinking parameter. The reverse behiour is found for the Casson fluid parameter. The results are numerically computed, analyzed and discussed. For the efficiency of present model, the results are compared with earlier investigations.

The dynamic response of FG cylindrical beam subjected to bending and the centrifugal force of rotation on the basis of modified size-dependent high-order theories

  • Jun Xiang;Mengran Xu
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.47-61
    • /
    • 2023
  • This paper examines the dynamic response of rotating nanodevices under the external harmonic load. The spinning nanosystem is made of nanoscale tubes that rotate around the central nanomotor and is mathematically modeled via high-order beam theory as well as nonclassical nonlocal theory for the size impact. According to the Hamilton principle, the dynamic motion equations are derived, then the time-dependent results are obtained using the Newmark Beta technique along with the generalized differential quadratic method. The presented results are discussed dynamic deflection, resonant frequency, and natural frequency in response to the different applicable parameters, which help develop and produce nanoelectromechanical systems (NEMS) for various applications.