Browse > Article
http://dx.doi.org/10.12989/acc.2022.13.2.113

Polymers in construction: A brief review authors  

Khadimallah, Mohamed Amine (College of Engineering, Prince Sattam Bin Abdulaziz University)
Harbaoui, Imene (Laboratory of Applied Mechanics and Engineering LR-MAI, University Tunis El Manar-ENIT.)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Qazaq, Amjad (College of Engineering, Prince Sattam Bin Abdulaziz University)
Ali, Elimam (College of Engineering, Prince Sattam Bin Abdulaziz University)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Advances in concrete construction / v.13, no.2, 2022 , pp. 113-121 More about this Journal
Abstract
Polymers, particularly plastics, have been widely seen as an existential risk to the environment due to their contribution to pollution, carbon emissions and climate change. Many argue that it is possible to substantially ease the threat of plastics by engaging the public in reducing their use in day-to-day life and implementing efficient domestic waste management strategies. On the other hand, polymers and plastics in building and construction are considerably less problematic, if not attractive. In fact, the applications of polymers in construction have been continuously expanding. This is partly due to the developments made in this area being implemented within a sustainable development strategy. In this paper, the main applications of polymers in construction have been revisited and an overview of the research topics in each application has been briefly presented.
Keywords
applications; construction; overview; polymers; sustainable;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Aguiar, J.B. (1999), "Durability of polymeric pipes in contact with domestic products", Constr. Build. Mater., 13(3), 155-157. https://doi.org/10.1016/S0950-0618(98)00035-X.   DOI
2 Tokyay, M., Wasti, Y. and Polat, U. (2005), "Use of polymers in civil engineering applications", Polym. Constr..
3 Tolinski, M. (2006), "Real improvements for" fake wood", Plast. Eng., 62(6), 32-34.
4 Tolinski, M. (2008), "Building new opportunities for plastics-Plastics provide solutions for resilient, low-cost buildings and infrastructure", Plast. Eng., 64(9), 6.   DOI
5 Weyers, R.E., Prowell, B.D., Sprinkel, M.M. and Vorster, M. (1993), "Concrete bridge protection, repair, and rehabilitation relative to reinforcement corrosion: A methods application manual", Contract, 100, 103.
6 Carneiro, O.S., Silva, A.F. and Gomes, R. (2015), "Fused deposition modeling with polypropylene", Mater. Des., 83, 768-776. https://doi.org/10.1016/j.matdes.2015.06.053.   DOI
7 World Health Organization (2011), "Guidelines for drinking-water quality fourth edition", WHO Chronic., 38, 104-108.
8 Holsen, T.M., Park, J.K., Jenkins, D. and Selleck, R.E. (1991), "Contamination of potable water by permeation of plastic pipe", J. Am. Water Work. Assoc., 83(8), 53-56. https://doi.org/10.1002/j.1551-8833.1991.tb07199.x.   DOI
9 Morgado, T., Correia, J.R., Silvestre, N. and Branco, F.A. (2018), "Experimental study on the fire resistance of GFRP pultruded tubular beams", Compos. Part B Eng., 139, 106-116. https://doi.org/10.1016/j.compositesb.2017.11.036.   DOI
10 Winsen (2016), "Case study prepared by the boston consulting group as part of the future of construction project at the world economin forum: Demostrating the viability of 3D printing at construction scale".
11 Albertelli, A. (2009), "Production of glazed panels", USA Patent.
12 Davalos, J.F., Qiao, P., Xu, X.F., Robinson, J. and Barth, K.E. (2001), "Modeling and characterization of fiber-reinforced plastic honeycomb sandwich panels for highway bridge applications", Compos. Struct., 52(3-4), 441-452. https://doi.org/10.1016/S0263-8223(01)00034-4.   DOI
13 Davies, J.M., Wang, Y.C. and Wong, P.M. (2006), "Polymer composites in fire", Compos. Part A Appl. Sci. Manuf., 37(8), 1131-1141. https://doi.org/10.1016/j.compositesa.2005.05.032.   DOI
14 Chew, M.Y.L. and Zhou, X. (2002), "Enhanced resistance of polyurethane sealants against cohesive failure under prolonged combination of water and heat", Polym. Test., 21(2), 187-193. https://doi.org/10.1016/S0142-9418(01)00068-X.   DOI
15 Agavriloaie, L., Oprea, S., Barbuta, M. and Luca, F. (2012), "Characterisation of polymer concrete with epoxy polyurethane acryl matrix", Constr. Build. Mater., 37, 190-196. https://doi.org/10.1016/j.conbuildmat.2012.07.037.   DOI
16 Akovali, G. (2005), Polymers in Construction, iSmithers Rapra Publishing.
17 Fang, H., Bai, Y., Liu, W., Qi, Y. and Wang, J. (2019), "Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments", Compos. Part B Eng., 164, 129-143. https://doi.org/10.1016/j.compositesb.2018.11.047.   DOI
18 Gibson, I., Kvan, T. and Wai Ming, L. (2002), "Rapid prototyping for architectural models", Rapid Prototyp. J., 8(2), 91-95. https://doi.org/10.1108/13552540210420961.   DOI
19 Halliday, S. (2008), Sustainable construction, Routledge.
20 Hancock. T. (1843), English patient.
21 Skjevrak, I., Due, A., Gjerstad, K.O. and Herikstad, H. (2003), "Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water", Water Res., 37(8), 1912-1920. https://doi.org/10.1016/S0043-1354(02)00576-6.   DOI
22 Junior, M.W., Reis, J.M.L. and da Costa Mattos, H.S. (2017), "Polymer-based composite repair system for severely corroded circumferential welds in steel pipes", Eng. Failure Anal., 81, 135-144. https://doi.org/10.1016/j.engfailanal.2017.08.001.   DOI
23 Young, R.J. and Lovell, P.A. (1991), "Introduction to Polymers", Chapman and Hall, Ed 2, 292. https://doi.org/10.1002/pi.4990270217.   DOI
24 Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., 7(2), 65. https://doi.org/10.1016/j.conbuildmat.2007.03.023.   DOI
25 Reis, E.M. and Rizkalla, S.H. (2008), "Material characteristics of 3-D FRP sandwich panels", Constr. Build. Mater., 22(6), 1009-1018. https://doi.org/10.1016/j.conbuildmat.2007.03.023.   DOI
26 Sari, A. (2014), "Composites of polyethylene glycol (PEG600) with gypsum and natural clay as new kinds of building PCMs for low temperature-thermal energy storage", Energy Build., 69, 184-192. https://doi.org/10.1016/j.enbuild.2013.10.034.   DOI
27 Teijido, R., Ruiz-Rubio, L., Echaide, A.G., Vilas-Vilela, J.L., Lanceros-Mendez, S. and Zhang, Q. (2022), "State of the art and current trends on layered inorganic-polymer nanocomposite coatings for anticorrosion and multi-functional applications", Prog. Organ. Coat., 163, 106684. https://doi.org/10.1016/j.porgcoat.2021.106684.   DOI
28 Zia, K.M., Bhatti, H.N. and Bhatti, I.A. (2007), "Methods for polyurethane and polyurethane composites, recycling and recovery: A review", React. Func. Polym., 67(8), 675-692. https://doi.org/10.1016/j.reactfunctpolym.2007.05.004.   DOI
29 Kruth, J.P., Wang, X., Laoui, T. and Froyen, L. (2003), "Lasers and materials in selective laser sintering", Assembly Autom..
30 Ferdous, W., Manalo, A., Aravinthan, T. and Van Erp, G. (2016), "Properties of epoxy polymer concrete matrix: Effect of resin-to-filler ratio and determination of optimal mix for composite railway sleepers", Constr. Build. Mater., 124, 287-300. https://doi.org/10.1016/j.conbuildmat.2016.07.111.   DOI
31 Lisicins, M., Lapkovskis, V., Shishkin, A., Mironovs, V. and Zemcenkovs, V. (2015), "Conversion of polymer and perforated metallic residues into new value-added composite building materials", Energy Proc., 72, 148-155. https://doi.org/10.1016/j.egypro.2015.06.021.   DOI
32 Kumar, P., Chandrashekhara, K. and Nanni, A. (2004), "Structural performance of a FRP bridge deck", Constr. Build. Mater., 18(1), 35-47. https://doi.org/10.1016/S0950-0618(03)00036-9.   DOI
33 Liang, J. and Sun, S. (2000), "Site effects on seismic behavior of pipelines: A review", J. Pressure Vessel Tech., 122(4), 469-475. https://doi.org/10.1115/1.1285974.   DOI
34 Lin, X. and Zhang, Y.X. (2013), "Nonlinear finite element analyses of steel/FRP-reinforced concrete beams in fire conditions", Compos. Struct., 97, 277-285. https://doi.org/10.1016/j.compstruct.2012.09.042.   DOI
35 Lloyd. C. and James. G. (2018), "Repair and protection of structures in coastal environments", Concrete Mag..
36 Marsden, T., Stirling, M. and Lang, C. (2018), "High temperature test method for polymer pipes", Polym. Test., 68, 309-314. https://doi.org/10.1016/j.polymertesting.2018.04.008.   DOI
37 Martins, J.D.N., Freire, E. and Hemadipour, H. (2009), "Applications and market of PVC for piping industry", Polimeros, 19(1), 58-62. https://doi.org/10.1590/S0104-14282009000100014.   DOI
38 Hamade, R.F., Andari, T.R., Ammouri, A.H. and Jawahir, I.S. (2019), "Rotary friction welding versus fusion butt welding of plastic pipes-Feasibility and energy perspective", Proc. Manuf., 33, 693-700. https://doi.org/10.1016/j.promfg.2019.04.087.   DOI
39 Fowler, D.W., De Puy, D.W., Saud, A.B., Fontana, J. and Pickard, S.S. (1986), "Guide for the use of polymers in concrete", ACI Committee, 548.
40 Hadi, M.N. and Yuan, J.S. (2017), "Experimental investigation of composite beams reinforced with GFRP I-beam and steel bars", Constr. Build. Mater., 144, 462-474. https://doi.org/10.1016/j.conbuildmat.2017.03.217.   DOI
41 Hameed, A.M. and Hamza, M.T. (2019), "Characteristics of polymer concrete produced from wasted construction materials", Energy Proc., 157, 43-50. https://doi.org/10.1016/j.egypro.2018.11.162.   DOI
42 Indira, V. and Abhitha, K. (2021), "A review on polymer based adsorbents for CO2 capture", IOP Conference Series: Materials Science and Engineering, March.
43 Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., 3(1), 039. https://doi.org/10.12989/acc.2015.3.1.039.   DOI
44 Koh. E.N., Kim, K., Shin, J. and Kim, Y.W. (2014), "Polyurethane microcapsules for self-healing paint coatings", RSC Adv., 4(31), 16214-16223. https://doi.org/10.1039/C4RA00213J.   DOI
45 Murray, P.L. (2000), U.S. Patent No. 6,130,268. U.S.
46 Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539. https://doi.org/10.12989/acc.2017.5.5.539.   DOI
47 Mishra, A., Mehta, A., Basu, S., Shetti, N.P., Reddy, K.R. and Aminabhavi, T.M. (2019), "Graphiic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review", Carbon, 149, 693-721. https://doi.org/10.1016/j.carbon.2019.04.104.   DOI
48 Kodur, V.K.R. and Bhatt, P.P. (2018), "A numerical approach for modeling response of fiber reinforced polymer strengthened concrete slabs exposed to fire", Compos. Struct., 187, 226-240. https://doi.org/10.1016/j.compstruct.2017.12.051.   DOI
49 Rebeiz, K.S. (1995), "Time-temperature properties of polymer concrete using recycled PET", Cement Concrete Compos., 17(2), 119-124. https://doi.org/10.1016/0958-9465(94)00004-I.   DOI
50 Moses, J.P., Harries, K.A., Earls, C.J. and Yulismana, W. (2006), "Evaluation of effective width and distribution factors for GFRP bridge decks supported on steel girders", J. Bridge Eng., 11(4), 401-409. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:4(401).   DOI
51 Pattanaik, S.C. and Garg, R.P. (2008), "Methods of repair", in Construction World, ed. 139-144.
52 Naik, R.K., Panda, S.K. and Racherla, V. (2020), "A new method for joining metal and polymer sheets in sandwich panels for highly improved interface strength", Compos. Struct., 251, 112661. https://doi.org/10.1016/j.compstruct.2020.112661.   DOI
53 Morcous, G., Cho, Y., El-Safty, A. and Chen, G. (2010), "Structural behavior of FRP sandwich panels for bridge decks", KSCE J. Civil Eng., 14(6), 879-888. https://doi.org/10.1007/s12205-010-1025-4.   DOI
54 Pan, Y., Zhang, Y., Zhang, D. and Yang, H. (2021), "Effect of polymer and conventional molds on the aesthetical surface quality of concretes", Constr. Build. Mater., 302, 124375. https://doi.org/10.1016/j.conbuildmat.2021.124375.   DOI
55 Pearson, S. and Patel, R.G. (2002), "Repair of concrete in highway bridges-A practical guide", Application Guide AG 43.
56 Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585. https://doi.org/10.12989/acc.2018.6.6.585.   DOI
57 Goodyear. C. (1844), "Improvement in India-rubber fabrics", USA Patent.
58 Plunkett, J.D. (1997), "Fiber-reinforced polymer honeycomb short span bridge for rapid installation", Kansas Struct. Compos., Inc, Russel, Kansas.
59 Rajasarkka, J., Pernica, M., Kuta, J., Lasnak, J., Simek, Z. and Blaha, L. (2016), "Drinking water contaminants from epoxy resin-coated pipes: A field study", Water Res., 103, 133-140. https://doi.org/10.1016/j.watres.2016.07.027.   DOI
60 Nguyen, K.T., Navaratnam, S., Mendis, P., Zhang, K., Barnett, J. and Wang, H. (2020), "Fire safety of composites in prefabricated buildings: From fibre reinforced polymer to textile reinforced concrete", Compos. Part B Eng., 187, 107815. https://doi.org/10.1016/j.compositesb.2020.107815.   DOI
61 Amin, H.M. and Galal, A. (2021), Corrosion Protection of Metals and Alloys Using Graphene and Biopolymer Based Nanocomposites, CRC Press.
62 Asokan, P., Osmani, M. and Price, A. (2010), "Improvement of the mechanical properties of glass fibre reinforced plastic waste powder filled concrete", Constr. Build. Mater., 24, 448-460. https://doi.org/10.1016/j.conbuildmat.2009.10.017.   DOI
63 Bedi, R., Chandra, R. and Singh, S.P. (2013), "Mechanical properties of polymer concrete", J. Compos., 2013, 948745. https://doi.org/10.1155/2013/948745.   DOI
64 Tavares, C.M.L., Ribeiro, M.C.S., Ferreira, A.J.M. and Guedes, R.M. (2002), "Creep behaviour of FRP-reinforced polymer concrete", Compos. Struct., 57(1-4), 47-51. https://doi.org/10.1016/S0263-8223(02)00061-2.   DOI
65 Saleh, T.A., Shetti, N.P., Shanbhag, M.M., Reddy, K.R. and Aminabhavi, T.M. (2020), "Recent trends in functionalized nanoparticles loaded polymeric composites: An energy application.", Mater. Sci. Energy Tech., 3, 515-525. https://doi.org/10.1016/j.mset.2020.05.005.   DOI
66 Berman, B. (2012), "3-D printing: The new industrial revolution", Business Horizons, 55, 155-162. https://doi.org/10.1016/j.bushor.2011.11.003.   DOI
67 Bledzki, A.K. and Faruk, O. (2003), "Wood fiber reinforced polypropylene composites: effect of fibre geometry and coupling agent on physico-mechanical properties", Appl. Compos. Mater., 10, 365-379. https://doi.org/10.1023/A:1025741100628.   DOI
68 Bogue, R. (2013), "3D printing: The dawn of a new era in manufacturing?", Assembly Autom., 33, 307-311.   DOI
69 Bondoc, A.A., Canfield, V.R. and Ziegler, B.R. (1980), U.S. Patent No. 4,242,404.
70 Allen, H.G. (2013), Analysis and Design of Structural Sandwich Panels: The Commonwealth and International Library: Structures and Solid Body Mechanics Division, Elsevier.
71 Sullivan. H.W. and Mack. W.A. (1999), "Polymeric compositions and methods for making construction materials from them", USA Patent.
72 Schmidleithner, C. and Kalaskar, D.M. (2018), "Stereolithography", 3D Printing, ed.
73 Simoncello, N., Zampieri, P., Gonzalez-Libreros, J. and Pellegrino, C. (2019), "Experimental behaviour of damaged masonry arches strengthened with steel fiber reinforced mortar (SFRM)", Compos. Part B Eng., 177, 107386. https://doi.org/10.1016/j.compositesb.2019.107386.   DOI
74 Skripkiunas, G., Grinys, A. and Miskinis, K. (2009), "Damping properties of concrete with rubber waste additives", Mater. Sci., 15(3), 266-272.
75 Tapkin, S. (2008), "The effect of polypropylene fibers on asphalt performance", Build. Envir., 43(6), 1065-1071. https://doi.org/10.1016/j.buildenv.2007.02.011.   DOI
76 Thomas, B.S. and Gupta, R.C. (2016), "A comprehensive review on the applications of waste tire rubber in cement concrete", Renew. Sustain. Energy Rev., 54, 1323-1333. https://doi.org/10.1016/j.rser.2015.10.092.   DOI
77 Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043.   DOI
78 Chetanachan, W., Sookkho, D., Sutthitavil, W., Chantasatrasamy, N. and Sinsermsuksakul, R. (2001), "PVC wood: A new look in construction", J. Vinyl Additive Tech., 7(3), 134-137. https://doi.org/10.1002/vnl.10280.   DOI
79 Cai, S., Zhang, B. and Cremaschi, L. (2017), "Review of moisture behavior and thermal performance of polystyrene insulation in building applications", Build. Envir., 123, 50-65. https://doi.org/10.1016/j.buildenv.2017.06.034.   DOI
80 Calvert, P. (2001), "Inkjet printing for materials and devices", Chem. Mater., 13(10), 3299-3305. https://doi.org/10.1108/01445150310698652.   DOI
81 Chowdhury, S., Maniar, A.T. and Suganya, O. (2013), "Polyethylene terephthalate (PET) waste as building solution", Int. J. Chem. Envir. Bio. Sci., 1(2), 2320-4087.
82 Cole, T.A., Lopez, M. and Ziehl, P.H. (2006), "Fatigue behavior and nondestructive evaluation of full-scale FRP honeycomb bridge specimen", J. Bridge Eng., 11(4), 420-429. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:4(420).   DOI
83 Correia, J.R., Bai, Y. and Keller, T. (2015), "A review of the fire behaviour of pultruded GFRP structural profiles for civil engineering applications", Compos. Struct., 127, 267-287. https://doi.org/10.1016/j.compstruct.2015.03.006.   DOI
84 Abdel-Fattah, H. and El-Hawary, M.M. (1999), "Flexural behavior of polymer concrete", Constr. Build. Mater., 13, 253-262. https://doi.org/10.1016/S0950-0618(99)00030-6.   DOI
85 Corinaldesi, V., Giuggiolini, M. and Moriconi, G. (2002), "Use of rubble from building demolition in mortars", Waste Manag., 22(8), 893-899. https://doi.org/10.1016/S0956-053X(02)00087-9.   DOI