• Title/Summary/Keyword: Ac Impedance

Search Result 439, Processing Time 0.023 seconds

Industry safety characteristic of Prismatic EDLCs (각형 전기이중층 커패시터의 산업 안전성)

  • 김경민;장인영;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.247-257
    • /
    • 2004
  • Electrodes were fabricated based on activated carbon powder BP-20, conducting agent such as Super P, vapor grown carbon fiber (VGCF) and acetylene black (AB), and the mixed binders of flexible poly(vinylidenefluoridehexafluoropropylene) [P(VdF-co-HFP)] and cross linking dispersion agent of polyvinylpyrrolidone (PVP) to increase mechanical strength. According to impedance measurement of the electrode with the addition of conducting agent, we found that it was possible to charge rapidly by the fast steady-state current convergence due to low equivalent series resistance (AC-ESR, fast charge transfer rate at interface between electrode and electrolyte and low RC time constant. The self-discharge of unit cell showed that diffusion process was controlled by the ion concentration difference of initial electrolyte due to the characteristics of Electric Double Layer Capacitor (EDLC) charged by ion adsorption in the beginning, but this by current leakage through the double-layer at the electrode/electrolyte interface had a minor effect and voltages of curves were remained constant regardless of electrode material. We found that the 2.3V/230F grade EDLC would be applied to industrial safety usage such as uninterrupted power supply (UPS) because of the constant DC-ESR by IR drop regardless of discharge current.

  • PDF

Surface Coating and Electrochemical Properties of LiNi0.8Co0.15Al0.05O2 Polyaniline Composites as an Electrode for Li-ion Batteries

  • Chung, Young-Min;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1733-1737
    • /
    • 2009
  • A new cathode material based on Li$Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ (LNCA)/polyaniline (Pani) composite was prepared by in situ self-stabilized dispersion polymerization in the presence of LNCA. The materials were characterized by fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Electrochemical properties including galvanostatic charge-discharge ability, cyclic voltammetry (CV), capacity, cycling performance, and AC impedance were measured. The synthesized LNCA/Pani had a similar particle size to LNCA and exhibited good electrochemical properties at a high C rate. Pani (the emeraldine salt form) interacts with metal-oxide particles to generate good connectivity. This material shows good reversibility for Li insertion in discharge cycles when used as the electrode of lithium ion batteries. Therefore, the Pani coating is beneficial for stabilizing the structure and reducing the resistance of the LNCA. In particular, the LNCA/Pani material has advantageous electrochemical properties.

Mechanical and Electrical Performance of Anode-Supported Solid Oxide Fuel Cells during Thermal Cyclic Operation (열 사이클에 따른 고체산화물 연료전지의 기계적 및 전기적 특성)

  • Yang, Su-Yong;Park, Jae-Keun;Lee, Tae-Hee;Yu, Jung-Dae;Yoo, Young-Sung;Park, Jin-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.775-780
    • /
    • 2006
  • Mechanical and electrical performance of anode-supported SOFC single cells were analyzed after thermal cyclic operation. The experiments of thermal cyclic cell-operation were carried out four times and performance of each cell was measured at different temperatures of 650, 700, and $750^{\circ}C$, respectively. As increasing the number of thermal cycle test, single cells showed poor I-V characteristics and lower 4-point bending strength. The anode polarization was also measured by AC-impedance analysis. The observation of the microstructure of the anodes in single cells proved that the average particle size of Ni decreased and the porosity of anode increased. It is thought that the thermal cycle caused the degradation of performance of single cells by reducing the density of three-phase boundary region.

Charge/discharge Properties of $Li_2O-P_2O-V_2O_5$ Glasses as a Cathode Material for Lithium Rechargeable Battery (리튬 이차전지의 정극 물질로서 $Li_2O-P_2O-V_2O_5$ 유리의 충방전 특성)

  • 송희웅;구할본;손명모;이헌수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.383-386
    • /
    • 1999
  • The importance of rechargeable lithium cells has been emphasized. So a large variety of materials has been discovered and evaluated for use as reversible cathodes and electroyltes. This paper examines the charge/discharge properties and the charge/discharge cycling life of Li$_2$O-P$_2$O-V$_2$O$_{5}$Li cells. In audition, DTA tests were carried out on Li$_2$O-P$_2$O-V$_2$O$_{5}$ glass. As a result the best performance was achieved when 0.3Li$_2$O-0.1P$_2$O$_{5}$-0.6V$_2$O$_{5}$Li cells was mixed with SP270. that is discharge capacity of 240mAh/g have been achieved. In addition this battery exhibited good cycling performance. Considering these results we expected utilization of the Li$_2$O-P$_2$O-V$_2$O$_{5}$ glass as a cathode material in a secondary battery.y battery.

  • PDF

The Electrochemical Properties of $Li_xNi_{2-x}O_2$ prepared by Heat Treatment of LiOH and $Ni(OH)_2$ (LiOH와 $Ni(OH)_2$의 열처리에 의해 제조된 $Li_xNi_{2-x}O_2$의 전기화학적 특성)

  • Lim, S.H.;Lee, J.Y.;Yoon, S.S.;Son, J.I.;Gu, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.224-226
    • /
    • 1996
  • The purpose of this study is to research and develop $Li_xNi_{2-x}O_2$ cathode for lithium rechargeable battery. We investigated XRD, cyclic voltammetry, AC impedance response and charge/discharge cycling of $Li_xNi_{2-x}O_2$/Li cells. The cell resistance was decreased much at initial charge process from 100% SOC to 0% SOC. The discharge capacity based on $Li_xNi_{2-x}O_2$ of 1st and 15th cycles was 135mAh/g and 108mAh/g, respectively. The $Li_xNi_{2-x}O_2$/Li cell had a good properties.

  • PDF

Advanced Droop Control Scheme in Multi-terminal DC Transmission Systems

  • Che, Yanbo;Zhou, Jinhuan;Li, Wenxun;Zhu, Jiebei;Hong, Chao
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1060-1068
    • /
    • 2018
  • Droop control schemes have been widely employed in the control strategies for Multi-Terminal Direct Current (MTDC) system for its high reliability. Under the conventional DC voltage-active power droop control, the droop slope applies a proportional relationship between DC voltage error and active power error for power sharing. Due to the existence of DC network impedance and renewable resource fluctuation, there is inevitably a DC voltage deviation from the droop characteristic, which in turn results in inaccurate control of converter's power. To tackle this issue, a piecewise droop control with DC voltage dead band or active power dead band is implemented into controller design. Besides, an advanced droop control scheme with versatile function is proposed, which enables the converter to regulate DC voltage and AC voltage, control active and reactive power, get participated into frequency control, and feed passive network. The effectiveness of the proposed control method has been verified by simulation results.

Analysis on the Short Circuit Current of a Low Voltage Direct Current(DC) Distribution System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 저전압 직류 배전 시스템의 단락 고장 전류 분석)

  • Ahn, Jae-Min;Jeon, Jeong-Chay;Lim, Young-Bae;Bae, Seok-Myeong;Byeon, Gil-Sung;Lee, Kyoung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.473-476
    • /
    • 2010
  • In this paper, we analyzed the short circuit current of a low voltage direct current distribution system. For the analysis, we performed the modeling of the low voltage direct current distribution system with a 6-pulse three-phase thyristor rectifier using the PSCAD/EMTDC, surveyed impedance of sources, transformers and distribution lines to run a simulation. A result of the simulation is that short circuit currents of the direct current distribution system with the rectifier decreased due to a thyristor-ON-resistance(Ron). But in case of the low thyristor-ON resistance, output fault current of the rectifier increased over three-phase short circuit current of an AC power system without a rectifier by regular ratio of the rectifier. Because the output fault current of the rectifier can increase over interrupting the capacity of circuit breakers, studying short circuit currents of a low voltage direct current distribution system with a rectifier is necessary for introducing the direct current distribution systems.

Electrochemical Properties of $LiFePO_4$ Cathode Materials by Hydrothermal Method (수열법을 이용한 $LiFePO_4$의 전기화학적 특성)

  • Jin, En-Mei;Jun, Dea-Gue;Han, Zhen-Ji;Beak, Hyoung-Ryoul;Gu, Hal-Bon;Park, Bok-Kee;Son, Myung-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.384-385
    • /
    • 2006
  • Olivine $LiFePO_4$ cathode materials were synthesized by hydrothermal reaction, and coated by carbon black. The powders were characterized by the X-ray diffraction. $LiFePO_4$/Li cells were characterized electrochemically by charge/discharge experiments and ac impedance spectroscopy. The result showed the discharge capacity of $LiFePO_4$/Li cell was 133 mAh/g at the first cycle, and 128 mAh/g at the 30th cycle, respectively.

  • PDF

Freeze/Thaw cycle effects on GDLs and MEAs of PEFC (동결/해동 열사이클이 PEFC의 GDL/MEA에 미치는 영향)

  • Lim, Nam-Yun;Park, Gu-Gon;Park, Jin-Soo;Yoon, Young-Gi;Lee, Won-Yong;Lim, Tae-Won;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.96-98
    • /
    • 2006
  • Proper water management is vital to achieve high performance and durability of PEFC (Polymer Electrolyte Fuel Cell). The effects of the residual water from PEFC after purge in shut-down processes on GDL/MEAs were investigated with freeze/thaw cycles Freeze/thaw cycle tests were conducted with single cells which were designed from transparent acryl plates. Single cells which contain several amount of residual water were cycles from $80^{\circ}C$ to $-28^{\circ}C$. The resistance changes of the single cells which have various amount of residual water were evaluated by ac-impedance analysis with 24 times of freeze/thaw cycles. Also, after the freeze/thaw cycles, the property changes were characterized by visual methods such as SEM, EPMA. Though it was difficult to observe noticeable property changes in the visual characterizations, the resistance of cells dramatically increased with the amount of remained water.

  • PDF

Development of the Impedance Spectroscopy Instrument to Evaluate the Residual Useful Life of a Used Battery Module (폐배터리 모듈의 잔존수명 평가를 위한 임피던스 스펙트럼 측정 장치 개발)

  • Lee, Seungjune;Farooq, Farhan;Khan, Asad;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.195-197
    • /
    • 2019
  • 자동차용 배터리는 초기 용량의 80% 이하가 되면 교체하게 되며, 근간 폐배터리의 수가 폭발적으로 증가할 것으로 예측되고 있다. 폐배터리의 폐기로 인한 환경 파괴를 방지하고 자원을 재활용하기 위해서 자동차에서 나오는 폐배터리를 에너지저장장치(ESS)로 재사용 하는 것에 대한 관심이 높아지고 있다. 폐배터리를 ESS로 재구성하기 위해서는 폐배터리 모듈의 그레이딩을 통해 비슷한 성능의 모듈끼리 모아서 구성하는 것이 매우 중요하다. 배터리 모듈 간의 불균형은 전체 시스템의 성능을 저하시키며, 따라서 비슷한 성능과 잔존 수명을 가진 모듈을 골라내는 일은 폐배터리의 재사용에 있어서 첫 번째 선결 과제가 된다. 본 연구에서는 폐배터리의 상태 및 잔존수명평가를 위해 배터리 모듈의 임피던스 스펙트럼을 측정할 수 있는 장비를 개발하였다. 폐배터리 모듈에 AC 섭동을 인가하고 이를 측정하여 임피던스 스펙트럼을 계산할 수 있는 하드웨어와 소프트웨어를 개발하였다. 개발 장비는 60V이하의 폐배터리 모듈의 임피던스 스펙트럼을 0.1Hz에서 1kHz까지 측정 가능하며, 측정 결과를 바탕으로 커브 피팅을 통해 등가회로의 파라미터도 계산할 수 있다. SM3에서 얻어진 폐배터리 모듈을 이용하여 측정한 임피던스 스펙트럼을 상용장비인 BIM2로 측정한 결과를 비교하였고, Reduced Chi-Square를 이용한 분석결과 두 데이터가 거의 일치함을 알 수 있었다.

  • PDF