• Title/Summary/Keyword: Ac/dc/ac PWM converter

Search Result 277, Processing Time 0.027 seconds

Power Factor Correction of Single-phase Boost Converter for Low-cost Type UPS Configuration (저 가격형 UPS를 구성하기 위한 단상 부스트 컨버터의 고 역률 제어)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.3
    • /
    • pp.145-150
    • /
    • 2013
  • A novel AC to DC PWM converters with unity input power factor are proposed to overcome the above shortcoming. The main function of these converters is to shape the input line current to force it exactly in phase with the input AC voltage. Therefore, the input power factor can be improved to near unity and the input current harmonics can be eliminated. In this paper, half-bridge converter with two active switches and two diodes are utilized for low-cost type UPS configuration. By having only two semiconductors in the current path at any time, losses can be reduced over the conventional boost topology. Also, this converter provides controllable dc-link voltage, high power factor, and low cost type converter by simple power circuits. Simulation results show that the proposed half-bridge converter/inverter control technique can be applied to single-phase low-cost type UPS systems successfully.

Reduction of the Unbalanced Three Phase Input Current by Variable Notch Filter in Active AC Electronic Load (가변 노치필터에 의한 능동형 AC 전자부하의 3상 전류 불평형 저감)

  • Kim, Do-Yun;Lee, Jung-Hyo;Lee, Yong-Seok;Jung, Doo-Yong;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.158-165
    • /
    • 2012
  • In this paper, the test bed using three-phase PWM converter connected with single phase inverter in series is set up to configure an active AC electric load. Since the two topologies, three-phase PWM converter and single-phase inverter, can be operated bidirectionally, the system not only re-generates surplus power to grid but also prevents power dissipation. However, the construction of system has a drawback. That is, ripple components two times of inverter operation frequency occur at DC-Link due to cascade connection, it can be cause of three phase unbalance Since the operational characteristic of the active AC electric load, the power frequency entered into the electric load can be varied, and the ripple of DC-Link is changed as well. In this paper, the three-phase PWM converter using a variable notch filter is proposed, and the reduction of three-phase current unbalance is presented. the validity of the proposed PWM converter using a variable notch filter is verified by the simulation and experimental results.

Characteristics of DC 48[V] telecommunication power supply (DC 48[V] 통신용 전원 장치의 특성)

  • Jung, H.T.;Jo, M.C.;Youn, Y.T.;Kim, J.Y.;Mun, S.P.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.902-904
    • /
    • 2005
  • The AC-DC converter, which has three-phase AC power as input and isolated DC power as output is used for the regulated DC power supply of the telecommunication power processing system for several kilowatt class applications. The conventional DC power supply for the telecommunication power system comprises a PWM rectifier with sine-wave shaping input current unity power factor and a DC/DC converter connected to the PWM converter, which obtains DC 48[V]. Since power passes through these two power stage converters, the conversion power loss is difficult to provide high efficiency. To resolve these problems, this paper presents a new PWM rectified as a 1-stage power conversion method. It simulation and experimental results as proved from a practical point of view that 92.1[%]of conversion efficiency and input current which can meet harmonics regulation of the Class-A in IEC61000-3-3 are achieved.

  • PDF

Characteristics of DC 48[V] telecommunication power supply (DC 48[V] 통신용 전원 장치의 특성)

  • Jung, H.T.;Jo, M.C.;Youn, Y.T.;Kim, J.Y.;Mun, S.P.;Suh, K.V.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3114-3116
    • /
    • 2005
  • The AC-DC converter, which has three-phase AC power as input and isolated DC power as output is used for the regulated DC power supply of the telecommunication power processing system for several kilowatt class applications. The conventional DC power supply for the telecommunication power system comprises a PWM rectifier with sine-wave shaping input current unity power factor and a DC/DC converter connected to the PWM converter, which obtains DC 48[V]. Since power passes through these two power stage converters, the conversion power loss is difficult to provide high efficiency. To resolve these problems, this paper presents a new PWM rectified as a 1-stage power conversion method. It simulation and experimental results as proved from a practical point of view that 92.1[%] of conversion efficiency and input current which can meet harmonics regulation of the Class-A in IEC61000-3-3 are achieved.

  • PDF

Characteristics of DC 48[V] telecommunication power supply (DC 48[V] 통신용 전원 장치의 특성)

  • Jung, H.T.;Jo, M.C.;Youn, Y.T.;Kim, J.Y.;Mun, S.P.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2462-2464
    • /
    • 2005
  • The AC-DC converter, which has three-phase AC power as input and isolated DC power as output is used for the regulated DC power supply of the telecommunication power processing system for several kilowatt class applications. The conventional DC power supply for the telecommunication power system comprises a PWM rectifier with sine-wave shaping input current unity power factor and a DC/DC converter connected to the PWM converter, which obtains DC 48[V]. Since power passes through these two power stage converters, the conversion power loss is difficult to provide high efficiency. To resolve these problems, this paper presents a new PWM rectified as a 1-stage power conversion method. It simulation and experimental results as proved from a Practical point of view that 92.1[%]of conversion efficiency and input current which can meet harmonics regulation of the Class-A in IEC61000-3-3 are achieved.

  • PDF

Characteristics of DC 48[V] telecommunication power supply (DC 48[V] 통신용 전원 장치의 특성)

  • Jung, H.T.;Jo, M.C.;Youn, Y.T.;Kim, J.Y.;Mun, S.P.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1820-1822
    • /
    • 2005
  • The AC-DC converter, which has three-phase AC power as input and isolated DC power as output is used for the regulated DC power supply of the telecommunication power processing system for several kilowatt class applications. The conventional DC power supply for the telecommunication power system comprises a PWM rectifier with sine-wave shaping input current unity power factor and a DC/DC converter connected to the PWM converter, which obtains DC 48[V]. Since power passes through these two power stage converters, the conversion power loss is difficult to provide high efficiency. To resolve these problems, this paper presents a new PWM rectified as a 1-stage power conversion method. It simulation and experimental results as proved from a practical point of view that 92.1[%]of conversion efficiency and input current which can meet harmonics regulation of the Class-A in IEC61000-3-3 are achieved.

  • PDF

Modeling and Analysis of Active-Clamp, Full-Bridge Boost Converter (능동 클램프 풀브릿지 부스트 컨버터에 대한 모델링 및 분석)

  • Kim Marn-Go
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.610-614
    • /
    • 2004
  • Recently, an active-clamp, full-bridge boost converter has been actively studied for high-power applications such as power factor correction and battery discharger. However, DC and AC modeling for this converter has not conquered. In this paper, a DC and small-signal AC modeling for the active-clamp, full-bridge boost converter is described. Based on the operation principle, the ac part of the converter can be replaced by a do counterpart. Then, a conceptual equivalent circuit is derived by rearranging the switches. The equivalent circuit for this converter consists of CCM (Continuous conduction mode) boost and DCM (Discontinuous conduction mode) buck converter. The analyses for the equivalent CCM boost and DCM buck converter are done using the model of PWM switch. The theoretical modeling results are confirmed through experiment or SIMPLIS simulation.

  • PDF

A Novel Soft Switching PWM·PFC AC·DC Boost Converter

  • Sahin, Yakup
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.256-262
    • /
    • 2018
  • This study introduces a novel Soft Switching (SS) Pulse Width Modulated (PWM) AC-DC boost converter. In the proposed converter, the main switch is turned on with Zero Voltage Transition (ZVT) and turned off with Zero Current Transition (ZCT). The main diode is turned on with Zero Voltage Switching (ZVS) and turned off with Zero Current Switching (ZCS). The auxiliary switch is turned on and off with ZCS. All auxiliary semiconductor devices are turned on and off with SS. There is no extra current or voltage stress on the main semiconductor devices. The majority of switching energies are transferred to the output by auxiliary transformer. Thus, the current stress of auxiliary switch is significantly reduced. Besides, the proposed converter has simple structure and ease of control due to common ground. The theoretical analysis of the proposed converter is verified by a prototype with 100 kHz switching frequency and 500 W output power. Furthermore, the efficiency of the proposed converter is 98.9% at nominal output power.

Rapid response control A Utility Interactive Photovoltaic Generation System (계통연계형 태양광발전 시스템의 속응성 제어)

  • Chung, Choon-Byeong;Jeon, Kee-Young;Lee, Sang-Hyun;Han, Kyung-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.279-285
    • /
    • 2007
  • Since the residential load is an AC load and the output of solar cell is a DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell. In case of driving to interact with utility line, in order to operate at unity power factor, converter must provide the sinusoidal wave current and voltage with same phase of utility line. Since output of solar cell is greatly fluctuated by insolation, it is necessary that the operation of solar cell output in the range of the vicinity of maximum power point. In this paper, DC/AC converter is three phase PWM converter with smoothing reactor. And then, feedforward control used to obtain a superior characteristic for current control and digital PLL circuit used to detect the phase of utility line.

  • PDF

The Control of Single Phase AC/DC Converter by using Binary Combination (바이너리 조합에 의한 단상 AC/DC 컨버터의 제어)

  • Park, S.W.;Chun, J.H.;Woo, J.I.;Kim, J.H.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1336-1338
    • /
    • 2000
  • This paper proposed the single phase multi-level PWM AC/DC converter using binary combine which controls input current by combining buck converters to improve input current characteristic, and confirmed its validity throughout simulation and experiment. This method, which is multiplying and duplicating output of converter of equal capacity, has the advantage of being able to control unit power factor of input current and reducing of the problem caused by high frequency switching, and appling to high power converter because filter is not necessary etc.

  • PDF