• Title/Summary/Keyword: Ac/Ds

Search Result 42, Processing Time 0.022 seconds

Analysis of Genotype and Flanking Sequence Tagged from pooled Ds Insertional lines in rice (벼 Ds 삽입변이 pooling 계통들의 FST 및 유전자형 분석)

  • Ahn, Byung-Ohg;Kim, Jeong-Ho;Ji, Sang-hye;Yun, Doh-Won;Park, Yong-Hwan;Ji, Hyeon-So;Eun, Moo-Young;Lee, Gi-hwan;Suh, Seok-Cheol;Lee, Myung-Chul
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.387-393
    • /
    • 2008
  • Over 7 individual rice (Oryza sativa L.) plants per a line were sowed and sampled by pooled sampling method for genomic DNA extraction. The 5,400 flanking sequence tags (FSTs) were analysed by adaptor PCR and direct sequencing. FST analysis showed that the intragenic FSTs, the intergenic FSTs, and the original insertional sequences including hot spot covered 48.1% (2,597), 25.6% (1,383), and 25% (1,350), respectively. The 2,597 intragenic FSTs were used for genotyping to determine whether they are heterozygous or homozygous, and 1,393 core lines were selected. Among them, 422 knockout genes were distributed on chromosome 3, while 56 - 157 intragenic FSTs scattered on other chromosomes. Among 1,393 FSTs, known genes such as transcription factor covered 59.4% (827), while unknown genes such as expressed protein covered 40.6% (566). RT-PCR indicated that some core lines had no expression or decreased expression level in their knockout genes. It means that core lines are very useful knockout lines for functional genomic studies.

Imposed Weighting Factor Optimization Method for Torque Ripple Reduction of IM Fed by Indirect Matrix Converter with Predictive Control Algorithm

  • Uddin, Muslem;Mekhilef, Saad;Rivera, Marco;Rodriguez, Jose
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.227-242
    • /
    • 2015
  • This paper proposes a weighting factor optimization method in predictive control algorithm for torque ripple reduction in an induction motor fed by an indirect matrix converter (IMC). In this paper, the torque ripple behavior is analyzed to validate the proposed weighting factor optimization method in the predictive control platform and shows the effectiveness of the system. Therefore, an optimization method is adopted here to calculate the optimum weighting factor corresponds to minimum torque ripple and is compared with the results of conventional weighting factor based predictive control algorithm. The predictive control algorithm selects the optimum switching state that minimizes a cost function based on optimized weighting factor to actuate the indirect matrix converter. The conventional and introduced weighting factor optimization method in predictive control algorithm are validated through simulations and experimental validation in DS1104 R&D controller platform and show the potential control, tracking of variables with their respective references and consequently reduces the torque ripple.

Sensor Fault Detection, Localization, and System Reconfiguration with a Sliding Mode Observer and Adaptive Threshold of PMSM

  • Abderrezak, Aibeche;Madjid, Kidouche
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1012-1024
    • /
    • 2016
  • This study deals with an on-line software fault detection, localization, and system reconfiguration method for electrical system drives composed of three-phase AC/DC/AC converters and three-phase permanent magnet synchronous machine (PMSM) drives. Current sensor failure (outage), speed/position sensor loss (disconnection), and damaged DC-link voltage sensor are considered faults. The occurrence of these faults in PMSM drive systems degrades system performance and affects the safety, maintenance, and service continuity of the electrical system drives. The proposed method is based on the monitoring signals of "abc" currents, DC-link voltage, and rotor speed/position using a measurement chain. The listed signals are analyzed and evaluated with the generated residuals and threshold values obtained from a Sliding Mode Current-Speed-DC-link Voltage Observer (SMCSVO) to acquire an on-line fault decision. The novelty of the method is the faults diagnosis algorithm that combines the use of SMCSVO and adaptive thresholds; thus, the number of false alarms is reduced, and the reliability and robustness of the fault detection system are guaranteed. Furthermore, the proposed algorithm's performance is experimentally analyzed and tested in real time using a dSPACE DS 1104 digital signal processor board.

Design and Analysis of Universal Power Converter for Hybrid Solar and Thermoelectric Generators

  • Sathiyanathan, M.;Jaganathan, S.;Josephine, R.L.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.220-233
    • /
    • 2019
  • This work aims to study and analyze the various operating modes of universal power converter which is powered by solar and thermoelectric generators. The proposed converter is operated in a DC-DC (buck or boost mode) and DC-AC (single phase) inverter with high efficiency. DC power sources, such as solar photovoltaic (SPV) panels, thermoelectric generators (TEGs), and Li-ion battery, are selected as input to the proposed converter according to the nominal output voltage available/generated by these sources. The mode of selection and output power regulation are achieved via control of the metal-oxide semiconductor field-effect transistor (MOSFET) switches in the converter through the modified stepped perturb and observe (MSPO) algorithm. The MSPO duty cycle control algorithm effectively converts the unregulated DC power from the SPV/TEG into regulated DC for storing energy in a Li-ion battery or directly driving a DC load. In this work, the proposed power sources and converter are mathematically modelled using the Scilab-Xcos Simulink tool. The hardware prototype is designed for 200 W rating with a dsPIC30F4011 digital controller. The various output parameters, such as voltage ripple, current ripple, switching losses, and converter efficiency, are analyzed, and the proposed converter with a control circuit operates the converter closely at 97% efficiency.

Simple AI Robust Digital Position Control of PMSM using Neural Network Compensator (신경망 보상기를 이용한 PMSM의 간단한 지능형 강인 위치 제어)

  • 윤성구
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.620-623
    • /
    • 2000
  • A very simple control approach using neural network for the robust position control of a Permanent Magnet Synchronous Motor(PMSM) is presented The linear quadratic controller plus feedforward neural network is employed to obtain the robust PMSM system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a fedforward recall and error back-propagation training. Since the total number of nodes are only eight this system can be easily realized by the general microprocessor. During the normal operation the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. And the state space analysis is performed to obtain the state feedback gains systematically. IN addition the robustness is also obtained without affecting overall system response. This method is realized by a floating-point Digital Singal Processor DS1102 Board (TMS320C31) The basic DSP software is used to write C program which is compiled by using ANSI-C style function prototypes.

  • PDF

Wireless Power Transfer for Electric Vehicles Charging Based on Hybrid Topology Switching With a Single Inverter

  • Chen, Yafei;Zhang, Hailong;Kim, Dong-Hee;Park, Sung-Jun;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_1
    • /
    • pp.115-124
    • /
    • 2020
  • In wireless power transfer (WPT) system, the conventional compensation topologies only can provide a constant current (CC) or constant voltage (CV) output under their resonant conditions. It is difficult to meet the CC and CV hybrid charging requirements without any other schemes. In this study, a switching hybrid topology (SHT) is proposed for CC and CV electric vehicle (EV) battery charging. By utilizing an additional capacitor and two AC switches (ACSs), a double-side LCC (DS-LCC) and an inductor and double capacitors-series (LCC-S) topologies are combined. According to the specified CC and CV charging profile, the CC and CV charging modes can be flexibly converted by the two additional ACSs. In addition, zero phase angle (ZPA) also can be achieved in both charging modes. In this method, because the operating frequency is fixed, without using PWM control, and only a small number of devices are added, it has the benefits of low-cost, easy-controllability and high efficiency. A 3.3-kW experimental prototype is configured to verify the proposed switching hybrid charger. The maximum DC efficiencies (at 3.3-kW) of the proposed SHT is 92.58%.

Main Entry of Serials (축차간행물의 기본기입선정에 관한 연구)

  • 최달현
    • Journal of Korean Library and Information Science Society
    • /
    • v.4
    • /
    • pp.211-236
    • /
    • 1977
  • Many have been concerned with the entry of serials in cataloging. Thouzh they believc the form of AACR 6 should be revised, the agreement was not yet reached among them. Whercas some librarians advocate no different entry in cataioging between monographs and serials, some agree that all serials are to be entered under its title. Main arguments are on the concepts of "corporate authorship" and "generic titlc". On account of disagreemefit on these concepts, there appear different ways 9T serials entry in various catalogs or bibliogaphies. Being not clearly defined the concept of "corporate authorship" in Korcan Cltaloging Rules, main cntry of a scrial was quite different either in a few national bibliographies or some universities' catalogs in T a e g ~C ity. In consideration 01 the incompleteness and changing authorship or diffused riuthorship of serials, it is desirable to revise and simplif1, - our czttaloging rules as to all the serials are to be entered under its titlc. This would be in ac.:ord +;ith International Stand~rdso n serials, eg. ISDS and ISBD(S). When a generic term is included in a title, it will not be sn important groblcm as the title mould be usi~ally made up in the form of "corporate name+gcncric term". This is duc to the difference of construction of thc words bciwcen Korean and English languages.ds bciwcen Korean and English languages.

  • PDF

Simple Al Robust Digital Position Control of PMSM using Neural Network Compensator (신경망 보상기를 이용한 PMSM의 간단한 지능형 강인 위치 제어)

  • Ko, Jong-Sun;Youn, Sung-Koo;Lee, Tae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.557-564
    • /
    • 2000
  • A very simple control approach using neural network for the robust position control of a Permanent Magnet Synchronous Motor(PMSM) is presented. The linear quadratic controller plus feedforward neural network is employed to obtain the robust PMSM system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a feedforward recall and error back-propagation training. Since the total number of nodes are only eight, this system can be easily realized by the general microprocessor. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. In addition, the robustness is also obtained without affecting overall system response. This method is realized by a floating-point Digital Signal Processor DS1102 Board (TMS320C31).

  • PDF

Electric Model of Li-Ion Polymer Battery for Motor Driving Circuit in Hybrid Electric Vehicle

  • Lee, June-Sang;Lee, Jae-Joong;Kim, Mi-Ro;Park, In-Jun;Kim, Jung-Gu;Lee, Ki-Sik;Nah, Wan-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.932-939
    • /
    • 2012
  • This paper presents an equivalent circuit model of a LIPB (Li-Ion Polymer battery) for Hybrid Electric Vehicles (HEVs). The proposed equivalent circuit can be used to predict the charging/discharging characteristics in time domain as well as the impedance characteristic analysis in frequency domain. Based on these features, a one-cell model is established as a function of Depth of Discharge (DoD), and a 48-cell model for a battery pack was also established. It was confirmed by experiment that the proposed model predict the discharging and impedance (AC) characteristics quite accurately at different constant current levels. To check the usefulness of the proposed circuit, the model was used to simulate a motor driving circuit with an Insulated Gate Bipolar Transistor (IGBT) inverter and Brushless DC (BLDC) motor, and it is confirmed that the model can calculate the battery voltage fluctuation in time domain at different DoDs.