• 제목/요약/키워드: Absorption performance

검색결과 1,481건 처리시간 0.035초

분자량 크기별 토양 휴믹산(HA)의 구조적 특성 및 페난트렌 흡착 반응특성 비교 (Comparison in Structural Characteristics and Phenanthrene Sorption of Molecular Size-Fractionated Humic Acids)

  • 이두희;김소희;신현상
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권7호
    • /
    • pp.70-79
    • /
    • 2015
  • A sample of soil humic acid (HA) was divided by ultrafiltration (UF) into five fractions of different molecular size (UF1: > 300, UF2: 100~300, UF3: 30~100, UF4: 10~30, UF5: 1~10 kilodaltons). Apparent average molecular weight (Mw) of the HA fractions were measured using high performance size exclusion chromatography (HPSEC), and the chemical and structural properties of the five HA fractions were characterized by elemental compositions (H/C, O/C and w ((2O + 3NH)/ C)) and ultraviolet-visible absorption ratios (SUVA, A4/6). The organic carbon normalized-sorption coefficients (Koc) for the binding of phenanthrene to the HA fractions were determined by fluorescence quenching and relationship between the sorption coefficients and structural characteristics of the HA fractions were investigated. The elemental analysis and UV-vis spectral data indicated that the HA fractions with higher molecular weights have grater aliphatic character and lower contents of oxygen, while the HA fractions with lower molecular size have greater aromatic character and molecular polarity that correspond to greater SUVA and internal oxidation values (w). The log Koc values (L/kg C) were gradual increased from 4.45 for UF5 to 4.87 for UF1. The correlation study between the structural descriptors of the HA fractions and log Koc values of phenanthrene show that the magnitude of Koc values positively correlated with $M_w$ and H/C, while negatively correlated with the independent descriptors of the O/C, w, SUVA and A4/6.

Energy separation and carrier-phonon scattering in CdZnTe/ZnTe quantum dots on Si substrate

  • 만민탄;이홍석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.191.2-191.2
    • /
    • 2015
  • Details of carrier dynamics in self-assembled quantum dots (QDs) with a particular attention to nonradiative processes are not only interesting for fundamental physics, but it is also relevant to performance of optoelectronic devices and the exploitation of nanocrystals in practical applications. In general, the possible processes in such systems can be considered as radiative relaxation, carrier transfer between dots of different dimensions, Auger nonradiactive scattering, thermal escape from the dot, and trapping in surface and/or defects states. Authors of recent studies have proposed a mechanism for the carrier dynamics of time-resolved photoluminescence CdTe (a type II-VI QDs) systems. This mechanism involves the activation of phonons mediated by electron-phonon interactions. Confinement of both electrons and holes is strongly dependent on the thermal escape process, which can include multi-longitudinal optical phonon absorption resulting from carriers trapped in QD surface defects. Furthermore, the discrete quantized energies in the QD density of states (1S, 2S, 1P, etc.) arise mainly from ${\delta}$-functions in the QDs, which are related to different orbitals. Multiple discrete transitions between well separated energy states may play a critical role in carrier dynamics at low temperature when the thermal escape processes is not available. The decay time in QD structures slightly increases with temperature due to the redistribution of the QDs into discrete levels. Among II-VI QDs, wide-gap CdZnTe QD structures characterized by large excitonic binding energies are of great interest because of their potential use in optoelectronic devices that operate in the green spectral range. Furthermore, CdZnTe layers have emerged as excellent candidates for possible fabrication of ferroelectric non-volatile flash memory. In this study, we investigated the optical properties of CdZnTe/ZnTe QDs on Si substrate grown using molecular beam epitaxy. Time-resolved and temperature-dependent PL measurements were carried out in order to investigate the temperature-dependent carrier dynamics and the activation energy of CdZnTe/ZnTe QDs on Si substrate.

  • PDF

드롭랜딩 시 심박수 증가에 따른 하지의 생체역학적 차이 분석 (Analysis on Biomechanical Differences in Lower Limbs Caused by Increasing Heart Rates During Drop-landing)

  • 홍완기;김도은
    • 한국운동역학회지
    • /
    • 제25권2호
    • /
    • pp.141-147
    • /
    • 2015
  • Objective : This study aimed to understand how increased heart rates at the time of drop landing during a step test would affect biomechanical variables of the lower extremity limbs. Background : Ballet performers do more than 200 landings in a daily training. This training raises the heart rate and the fatigability of the lower extremity limbs. Ballet performance high heart rate can trigger lower extremity limb injury. Method : We instructed eight female ballet dancers with no instability in their ankle joints(mean ${\pm}$ SD: age, $20.7{\pm}0.7yr$; body mass index, $19.5{\pm}1.2kg/m^2$, career duration, $8.7{\pm}2.0yr$) to perform the drop landing under the following conditions: rest, 60% heart rate reserve (HRR) and 80% HRR. Results : First, the study confirmed that the increased heart rates of the female ballet dancers did not affect the working ranges of the knee joints during drop landing but only increased angular speeds, which was considered a negative shock-absorption strategy. Second, 80% HRR, which was increased through the step tests, led to severe fatigue among the female ballet dancers, which made them unable to perform a lower extremity limb-neutral position. Hence, their drop landing was unstable, with increased introversion and extroversion moments. Third, we observed that the increasing 80% HRR failed to help the dancers effectively control ground reaction forces but improved the muscular activities of the rectus femoris and vastus medialis oblique muscles. Fourth, the increasing heart rates were positively related to the muscular activities of the vastus medialis oblique and rectus femoris muscles, and the extroversion and introversion moments. Conclusion/Application : Our results prove that increased HRR during a step test negatively affects the biomechanical variables of the lower extremity limbs at the time of drop landing.

Influence of Deposition Method on Refractive Index of SiO2 and TiO2 Thin Films for Anti-reflective Multilayers

  • Song, Myung-Keun;Yang, Woo-Seok;Kwon, Soon-Woo;Song, Yo-Seung;Cho, Nam-Ihn;Lee, Deuk-Yong
    • 한국세라믹학회지
    • /
    • 제45권9호
    • /
    • pp.524-530
    • /
    • 2008
  • Anti-Reflective (AR) thin film coatings of $SiO_2$ (n= 1.48) and $TiO_2$ (n=2.17) were deposited by ion-beam assisted deposition (IBAD) with End-Hall ion source and conventional electron beam (e-beam) evaporation to investigate the effect of deposition method on the refractive indicies (n) of the fIlms. Green-light generation using a GaAs laser diode was achieved via excitation of the second harmonic. The latter resulted from the transmission of the fundamental guided-mode wave of 1064 nm through periodically poled $LiNbO_3$. Large differences in the refractive indicies of each of the layers in the multilayer coating may improve AR performance. IBAD of $SiO_2$ reduced its refractive index from 1.45 to 1.34 at 1064 nm. Conversely, e-beam evaporation of $TiO_2$ increased its refractive index from 1.80 to 2.11. In addition, no fluctuations in absorption at the wavelength of 1064 nm were found. The results suggest that films prepared by different deposition methods can increase the effectiveness of multilayer AR coatings.

식단에 따르는 페노피브레이트 서방성 캡슐의 1회 경구 투여 후 약물동태학 및 약물동력학의 평가 (Effect of Food on Pharmacokinetics and Pharmacodynamics of Fenofibric Acid after a Single Oral Dose of Fenofibrate Sustained-Release Capsule)

  • 윤휘열;김정현;이은주;정수연;최선옥;김형기;권준택;강원구;권광일
    • 한국임상약학회지
    • /
    • 제15권1호
    • /
    • pp.34-40
    • /
    • 2005
  • We examined the effects of food on pharmacokinetic and pharmacodynamic properties of fenofibrate released from sustained-release(SR) capsule as therapy for hypolipidemia. Twenty-four healthy volunteers were used in $3{\times}3$ crossover pharmacokinetic and pharmacodynamic study; Additional six volunteers were used as a control group (i.e., no fenofibrate administration). A single dose of fenofibrate (SR capsule, 250 mg) was administered on three occasions: after overnight fasting, after consumption of a standard breakfast, and after a high-fat breakfast. Serial blood samples were collected for the next 72 hours. Plasma fenofibric acid concentrations were measured by high performance liquid chromatography, and pharmacokinetic parameters were calculated using ADAPT II program. Plsama triglyceride concentrations were measured by blood chemistry analyzer (CH-100). The pharmacokinetic parameters were significantly affected by food intake. The high-fat breakfast affected the rate of absorption of fenofibrate more than did the standard breakfast and fasted conditions. Plasma concentrations of triglyceride at 24 hours decreased significantly after the administration of fenofibrate compared with the concentration at 0 hours(P<0.05). In healthy volunteers, the bioavailability of fenofibrate was greater when administered via sustained-release capsules immediately after the consumption of food than after fasting condition.

  • PDF

질산제조 플랜트 N2O 제거용 촉매기술: 적용위치별 기술옵션 (Catalytic Technologies for Nitric Acid Plants N2O Emissions Control: In-Duct-Dependent Technological Options)

  • 김문현
    • 한국환경과학회지
    • /
    • 제21권1호
    • /
    • pp.113-123
    • /
    • 2012
  • A unit emission reduction of nitrous oxide ($N_2O$) from anthropogenic sources is equivalent to a 310-unit $CO_2$ emission reduction because the $N_2O$ has the global warming potential (GWP) of 310. This greatly promoted very active development and commercialization of catalysts to control $N_2O$ emissions from large-scale stationary sources, representatively nitric acid production plants, and numerous catalytic systems have been proposed for the $N_2O$ reduction to date and here designated to Options A to C with respect to in-duct-application scenarios. Whether or not these Options are suitable for $N_2O$ emissions control in nitric acid industries is primarily determined by positions of them being operated in nitric acid plants, which is mainly due to the difference in gas temperatures, compositions and pressures. The Option A being installed in the $NH_3$ oxidation reactor requires catalysts that have very strong thermal stability and high selectivity, while the Option B technologies are operated between the $NO_2$ absorption column and the gas expander and catalysts with medium thermal stability, good water tolerance and strong hydrothermal stability are applicable for this option. Catalysts for the Option C, that is positioned after the gas expander thereby having the lowest gas temperatures and pressure, should possess high de$N_2O$ performance and excellent water tolerance under such conditions. Consequently, each de$N_2O$ technology has different opportunities in nitric acid production plants and the best solution needs to be chosen considering the process requirements.

실크 정련 세리신 단백질의 분리특성과 응용(2) (Separation Performance and Application of Sericin Protein in Silk Degumming Solution(2))

  • 차진우;박인우;배기서;홍영기;이서희;김용덕
    • 한국염색가공학회지
    • /
    • 제22권2호
    • /
    • pp.132-139
    • /
    • 2010
  • Sericin pulverization process was applied by freezing-thawing of sericin protein concentration solution and physicochemical properties of sericin/chitosan blended films were investigated. In sericin pulverization process by freezing-thawing method, the refrigeration storage at $4^{\circ}C$ maximized gelling between sericin molecules, which increased 10% of recovery ratio from sericin concentration solution that using ultrafiltration procedure. In physicochemical properties of sericin/chitosan blended films, the maximum load of chitosan (6.7kgf) had higher than that of sericin (1.2kgf), and the elongation of sericin and chitosan had 96% and 34%, respectively. Also FT-IR analysis of sericin/chitosan blended films showed that both sericin and chitosan films had amide I peak (N-H bond) in $1,521cm^{-1}$ and amide II peak (C=O bond) in $1,630cm^{-1}$. In addition, it could confirm compatibility between both materials as indicated by the decrease in the amide I peak's absorption value as chitosan content increases.

Lactobacillus plantarum 발효에 의한 갈근탕의 생물 전환 성분 연구 (Bioconversion Constituents of Galgeun-tang Fermented by Lactobacillus plantarum)

  • 양민철;김동선;정상원;마진열
    • 한국약용작물학회지
    • /
    • 제19권6호
    • /
    • pp.446-455
    • /
    • 2011
  • Galgeun-tang (GGT) is a traditional medicinal formula that is widely prescribed to treat cold, asthma, and hives in Korea. Fermented herbal medicines can be made more effective than normal herbal medicines by increasing the absorption and bioavailability of the active compounds. In this study, we fermented Galgeun-tang to produce bioconversion constituents using Lactobacillus plantarum (GGT144), and found that four peaks were decreased, three peaks were increased and two new peaks appeared in the HPLC-DAD chromatogram. After HPLC-DAD-guided fractionation of the newly-appearing compounds (1 and 5) and the increased (6, 7, and 9) compounds, the structure of the compounds was determined using NMR and MS. Using this approach the compounds were identified to be pyrogallol (1), daidzein (5), liquiritigenin (6), cinnamyl alcohol (7), and formononetin (9), respectively. In addition, the decreased compounds were identified to be daidzin (2), liquiritin (3), ononin (4), and cinnam aldehyde (8) using HPLC-DAD analysis with standard compounds. The high performance liquid chromatography method was used to quantify the nine constituents in GGT and GGT144. All calibration curves of the standard compounds displayed excellent linearity with a $R^2$ > 0.9968.

이상지질혈증과 치료제 연구개발 경향 (Drug research and development tend to hyperlipidemia)

  • 설인찬
    • 혜화의학회지
    • /
    • 제18권2호
    • /
    • pp.1-12
    • /
    • 2009
  • Most of the cholesterol is synthesized by liver in the body while about one of third is taken via dietary. The main functions of cholesterol is to protect membranes in cell surface, avoid the arterial bleeding by hypertension, and prolong the life of erythrocytes, and so on. However, overload of cholesterol leads to arteriosclerosis associated with leading death cause. Lack of physical activity, emotional and environmental stress, and low intake of protein or vitamin E induce the unbalance between HDL- and LDL-cholesterol so become a basis of ischemic disorders in heart, brain and elsewhere in the body. So far, four major classes of medications for hyperlipidemia are HMG-CoA reductase inhibitors (statins), bile acid sequestrants, nicotinic acid, and fibric acids. The statins can lower LDL and levels triglyceride, but may induce myopathy and an elevation of liver enzyme levels. The bile acid sequestrants lower LDL levels and raise HDL levels with no effect on triglyceride levels but side effects of gastrointestinal (GI) distress, constipation, and a decrease in the absorption of other drugs. Nicotinic acid and fibric acids lower LDL and triglyceride levels with showing flushing, hyperglycemia, hyperuricemia, GI distress, and hepatotoxicity dyspepsia, gallstones, myopathy, and unexplained noncardiac death as adverse effects. Above western drugs lower cholesterol by 15 to 30% while all have notable adverse effects. In traditional medicine, hyperlipidemia is regarded as retention of phlegm and fluid disease. Etiology and pathogenesis of hyperlipidemia is basically based on Spleen-Deficiency and Phlegm-Stagnation, accumulation and stasis of -heat, and Qi & blood stagnation induced by Phlegm-damp, water-dampness, and blood stasis. Thereby, strengthening Spleen and dissolving Phlegm, clearing away heat and diuresis, and supplementing Qi and activating blood circulation are commonly used therapeutic methods for hyperlipidemia. The traditional herbal medicine, have been used for patients with CVA, hypertension or hyperlipidemia in Oriental hospital or Oriental clinic. The lock and key theory is used to develop most of western medicine, however many diseases are caused by mixed factors in body-complex system. We expect that Oriental pharmacological theory could be newborn as a novel drug showing high advantage of blood levels of lipidsand QOL of performance without side effects.

  • PDF

THE ANALYSIS OF EFFLUENT GAS FROM ETHYLENE FURNACE BY NEAR-INFRARED SPECTROSCOPY

  • Lee, Joon-Sik;Kim, Jeong-Hyen;Cho, In-Ho
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1192-1192
    • /
    • 2001
  • Usually there are many furnaces in a ethylene plant and the performance of total furnaces can be improved if that of each furnace is monitored and controlled. For this purpose real-time data for the effluent of each furnace is necessary. However, it is very difficult to analyze the total effluent stream of a ethylene furnace by real-time because it is composed of so many components including heavy hydrocarbons. Fortunately, component data for lighter hydrocarbons is much more important than that of heavier ones for ethylene furnace. In ordinary case, the on-line measurement of light hydrocarbons is performed by on-stream gas chromatography, after separating gas-phase part from effluent. The main and important components of gas-phase are Methane, Ethane, Ethylene, and Propylene. If we can use Near-infrared spectroscopy for measuring those components within good reproducibility, shorter analysis time, better repeatability, easier maintenance and lower cost will make Near-infrared (NIR) analyzer replace on-stream gas chromatography in this process. Although it is known to be very difficult to measure gas components because of very weak absorption in Near-infrared region, we have studied the feasibility of the application of NIR for the measurement of gas-phase hydrocarbon in the effluent of ethylene furnace. The samples were obtained from actual process and NIR spectra were collected over 1100 to 2500nm range. NIR spectra and calibrations showed and demonstrated the possibility of extending NIR spectroscopy to the measurement of gas-phase hydrocarbon in the effluent of ethylene furnace.

  • PDF