• Title/Summary/Keyword: Absorption/Adsorption

Search Result 351, Processing Time 0.038 seconds

Studies on the Several Soil Factors Affecting on Alachlor and Paraquat Adsorption by Soils (Alachlor 와 Paraquat 의 토양흡착(土壤吸着)에 관여(關與)하는 토양인자(土壤因子)에 대한 연구(硏究))

  • Lim, Soo-Kil;Bong, Won-Ae
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.2
    • /
    • pp.101-108
    • /
    • 1992
  • In order to illustrate adsorption phenomena of herbicides(alachlor and paraquat) on soils, absorption equation of herbicides and the relationships between soil properties and adsorption constants were investigated with 22 soils. The results were as follows : 1. The shaking time for approaching equillibrium reaction of herbicides(alachlor and paraquat) with woils were about 30 minutes for paraquat and 4 hours for alachlor, respectively. 2. The distribution coefficients of alachlor were inbetween 0.81-33.83 in 5 ppm and 0.09-15.52 in 50 ppm, respectively. 3. The adsorption of alachlor was positively correlated with organic matter and paraquat was with clay content of soils. 4. Both paraquat and alachlor were highly adsorbed in Chunpo series soil containing low contents of organic matter and clay on account of different mechanism from other soils, 5. Freundlich's adsorption constant(K) was greater than distribution coefficient(Kd), and the differences between K and Kd's were to be increased with increasing equillibrium concentrations.

  • PDF

A study on the Optimization of Sewage Sludge-based Adsorbent Carbonization Condition for Improving Adsorption Capacity of Hydrogen Sulfide (H2S) (황화수소(H2S) 흡착성능 증진을 위한 하수슬러지 기반 흡착제 탄화조건 최적화 연구)

  • Choi, Sung Yeol;Jang, Young Hee;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.765-771
    • /
    • 2018
  • In this study, the optimization of carbonization conditions in manufacturing processes was performed to improve the absorption performance of sewage sludge based sorbent used for treating $H_2S$ out of all odorous substances generated by various environmental facilities. Adsorbents applied were manufactured from the sewage treatment plant under different carbonization conditions, such as temperature and heating rate, and the correlation between the adsorption performance and physical properties of the adsorbents was verified. As a result, the adsorption performance of sludge at $900^{\circ}C$ with a heating rate of $10^{\circ}C/min$ was the best, and the SEM and BET analysis revealed that specific surface area and characteristics of pore (size, volume) were major parameters for the adsorption. In addition, the effect of K ions used for improving the adsorption performance of the optimum carbonization condition sorbent was insignificant for the sewage sludge based sorbent.

Enhancement of Dye Adsorption on TiO2 Surface through Hydroxylation Process for Dye-sensitized Solar Cells

  • Jang, Inseok;Song, Kyungho;Park, Jun-Hwan;Oh, Seong-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2883-2888
    • /
    • 2013
  • To enhance the power conversion efficiency of dye-sensitized solar cell (DSSC), the surface of titanium dioxide ($TiO_2$) photoelectrode was modified by hydroxylation treatment with $NH_4OH$ solution at $70^{\circ}C$ for 6 h. The $NH_4OH$ solutions of various concentrations were used to introduce the hydroxyl groups on $TiO_2$ surface. As the concentration of $NH_4OH$ was increased, the short-circuit current density ($J_{SC}$) value and conversion efficiency of solar cells were increased because the amount of adsorbed dye molecules on $TiO_2$ surface was increased. As a result of the surface modification to introduce hydroxyl groups, the concentration of adsorbed dye on the $TiO_2$ surface could be improved up to 32.61% without the changes of morphology, surface area and pore volume of particles. The morphology, the specific surface area, the pore volume and the chemical states of $TiO_2$ surface were characterized by using FE-SEM, $N_2$ adsorption-desorption isotherms and XPS measurements. The amount of adsorbed dye and the performance of fabricated cells were analyzed by using UV-Vis absorption spectroscopy and solar simulator.

Physical Properties of Fine Dust Adsorption Matrix using Powder Activate Carbon (분말활성탄을 활용한 미세먼지 흡착형 경화체의 물리적 특성)

  • Lee, Won-Gyu;Kim, Yeon-Ho;Kyoung, In-Soo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.172-173
    • /
    • 2019
  • As the damage to fine dust increased, the Republic of Korea designated fine dust as a social disaster. The composition of the fine dust is composed of carbon, sulfate, nitrate, ammonium and minerals. The cause of fine dust is naturally generated by dirt, pollen, etc. In addition, there are artificial causes such as gaseous vehicle exhaust gas emitted from the use of fossil fuel. When fine dust enters the human body through breathing, it causes various respiratory diseases and skin diseases. In IARC, fine dust was designated as a carcinogen group 1. In this research, we tried to adsorb fine dust by physical adsorption using powdered activate carbon. Powdered activate carbon is a powdered activated carbon activated in a carbonized state. Porous material with high specific surface area and low density. Experimental items were tested for density, water absorption, and fine dust concentration according to the PAC addition ratio. Basic experiments were carried out to fabricate the fine dust adsorption matrix.

  • PDF

Technologies for Volatile Organic Compounds(VOCs) Treatment (휘발성 유기 화합물(VOCs) 처리 기술)

  • 서봉국;나영수;송승구
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.825-833
    • /
    • 2003
  • The emission of volatile organic compounds (VOCs) generated from painting and coating processes is a worldwide problem as contributing factors to the development of photochemical smog and other environmental problems. Common methods of reducing VOC emissions are adsorption on activated carbon, membrane separation, absorption, incineration, or catalytic oxidation. In this article, the environmental issues caused by VOC emissions and the trend of legislation against such emissions will be surveyed first. Several conventional control technologies will then be summarized and the characteristics of each process will be introduced. Lastly, some examples will be described to show the hybrid processes which have been industrially applied for the recovery of VOC.

Adsorption Characteristics of Furan, Thiophene, and Selenophene on Si(100) Surface

  • Park, Jinwoo;Lee, Han-Koo;Chung, J.W.;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.202.2-202.2
    • /
    • 2014
  • We have studied the bonding structures of five membered aromatic ring heterocyclic molecules, such as furan, thiophene, and selenophene, adsorbed on the Si(100) surface at room temperature with density functional theory. Additionally, we have investigated the evolution upon annealing of thiophene and selenophene molecules on the Si(100) surface by the core-level photoemission spectroscopy and near-edge X-ray absorption fine structure (NEXAFS). The core-level-spectra measured at different temperatures are consistently interpreted in terms of various adsorption structures suggested by theoretical calculations. In this study, we found the most suitable structures by theoretical and experimental results considering room temperature and mild thermal annealing.

  • PDF

Ag-modified BiOX (X=Cl, Br and I) Plates for Photocatalytic Dye Removal

  • Lee, Seung-Won;Choe, Yeong-In;Lee, Ju-Heon;Park, Yo-Han;Son, Yeong-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.424.2-424.2
    • /
    • 2014
  • Ag-modified BiOX (X=Cl, Br and I) nanoplates were synthesized by an ion-exchange reaction. We examined the fundamental properties by scanning electron microscopy (SEM), electron transmission microscopy (TEM), X-ray diffraction, UV-visible absorption, Fourier-transform infrared and photoluminescence spectroscopy. The adsorption and photocatalytic performances of the catalysts were tested with dyes under UV and visible light. A chemical scavenger method was employed to test the roles of active species (${\cdot}OH$, ${\cdot}O2-$ and h+) and understand photodegradation mechanism. Photoluminescence spectroscopy was used to examine ${\cdot}OH$ radical formation using terephthalic acid during photoirradiation.

  • PDF

Ozone Density Estimation and Stable Supply in the Thin Film Growth

  • Lim, Jung-Kwan;Park, Yong-Pil;Oh, Geum-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.42-45
    • /
    • 2001
  • An ozone condensation system is evaluated from the viewpoint of an ozone supplier for Bi-superconductor thin film growth. An ozone condenser by a selective adsorption on the silica gel surface is constructed. Ozone density is evaluated by three methods; ultraviolet absorption, thermal decomposition and Q-mass analyzing methods. Thermal decomposition method is found to be available to the density evaluation from dilute to highly condensed ozone. The highest ozone density condensed by the adsorption method is evaluated to be 97 mol%.

  • PDF

Characteristics of Oxidation System for Superconductor Thin Film( II ) (초전도 박막 제작을 위한 산화 시스템의 특성( II ))

  • An, I.S.;Park, Y.P.;Lim, J.K.;Jang, K.U.;Lee, H.K.;Kim, G.Y.;Lee, J.U.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.264-267
    • /
    • 2002
  • An ozone condensation system is evaluated from the viewpoint of an ozone supplier for oxide thin film growth. Ozone is condensed by the adsorption method and its concentration is analyzed by three methods; ultraviolet absorption, thermal decomposition and Q-mass analyzing methods. Thermal decomposition method is found to be available to the concentration evaluation from dilution to highly condensed ozone. The highest ozone concentration condensed by the adsorption method is evaluated to be 97 mol%

  • PDF

Characteristics of Oxidation System for Superconductor Thin Film( I ) (초전도 박막 제작을 위한 산화 시스템의 특성( I ))

  • Lim, J.K.;Park, Y.P.;Yang, D.B.;Kim, J.H.;Lee, H.K.;Park, N.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.272-275
    • /
    • 2002
  • An ozone condensation system is evaluated in the viewpoint of an ozone supplier for oxide thin film growth. Ozone is condensed by the adsorption and distillation method. Then their concentrations are analyzed by three methods; ultraviolet absorption, thermal decomposition and Q-mass analyzing methods. Thermal decomposition method is found to be available to the concentration evaluation from dilution to highly condensed ozone. The highest ozone concentration condensed by the adsorption method is evaluated to be 96 mol%. The ozone is supplied for a sufficiently long time to grow oxide thin films.

  • PDF