• Title/Summary/Keyword: Absorbents

검색결과 120건 처리시간 0.025초

식물정유와 광촉매를 이용한 흡수제 제조 및 VOCs 제거특성에 관한 연구 (The Manufacture of Absorbents and Removal Characteristics of VOCs by Essential Oil and Photocatalyst)

  • 정해은;양경순;강민경;조준형;오광중
    • 청정기술
    • /
    • 제23권1호
    • /
    • pp.54-63
    • /
    • 2017
  • 산업발전과 공업화로 인해 VOCs의 발생이 증가하고 있고, VOCs는 불쾌감을 주며 불만을 불러일으키는 요인 중 하나이다. 이를 제어하기 위해 본 연구는 식물정유와 광촉매로 흡수제를 제조하여 벤젠과 톨루엔을 제거하고자 하였다. 식물정유물질 선정실험을 수행한 결과, 편백나무의 제거효율이 약 70%로 가장 높게 나타났으며, GC분석 결과 Monoterpene류와 Sesquiterpene로 이루어져 있음을 확인하였다. 광촉매 선정실험 결과, 광촉매 종류는 $TiO_2$의 효율이 가장 높게 나타났으며, UV lamp power는 10 W, $TiO_2$의 양은 $0.1gL^{-1}$부터 효율이 우수하게 나타났다. 수산화라디칼 생성특성 실험결과, $TiO_2$의 농도와 UV lamp power가 클수록 많은 양의 라디칼이 생성되었다. 제조된 흡수제의 제거효율 및 반응속도 실험결과, 제거효율은 최대 약 98%까지 나타났으며, 활성화 에너지는 약 $18kJmol^{-1}$로 나타났다.

DME 합성 및 분리공정에서 CO2 제거를 위한 Rectisol 공정과 SelexolTM 및 Purisol 공정 사이의 성능비교 (Comparison of CO2 Removal Capabilities among Rectisol, SelexolTM, and Purisol Process for DME Synthesis and Separation Process)

  • 노재현;박회경;김동선;조정호
    • 청정기술
    • /
    • 제23권3호
    • /
    • pp.237-247
    • /
    • 2017
  • Dimethyl Ether (DME) 합성 및 분리공정에서 8% 이상의 $CO_2$가 DME 합성반응기로 유입되면 DME 생산성이 저하되는 문제가 발생된다. 따라서 본 연구에서는 DME 합성기로 유입되는 $CO_2$ 제거를 위한 방법으로 물리적 흡수제를 이용한 대표적인 세 가지 공정에 대해 전산모사를 통해 에너지 소모량을 서로비교 하였다. 비교 대상으로 선정한 공정으로는 메탄올을 사용하는 Rectisol$^{(R)}$ 공정, 폴리에틸렌글리콜 디메틸에테르(dimethyl ethers of polyethylene glycol, DEPG)를 사용하는 SelexolTM 공정 그리고 노말 메틸 피로리돈(n-methyl pyrrolidone, NMP)를 사용하는 Purisol$^{(R)}$ 공정으로 하였다. 각 공정에 대한 에너지 소모량을 비교해 본 결과 Rectisol$^{(R)}$ 공정 ${\gg}$ SelexolTM 공정 > Purisol$^{(R)}$ 공정 순으로 에너지가 많게 소모됨을 알 수 있었다. 그러므로 DME 제조공정에서 물리적 흡수제를 사용한 $CO_2$제거공정으로 가장 적합한 공정은 Purisol$^{(R)}$ 공정이라 판단된다.

직화소성법으로 제조된 인공골재의 특성 분석 (Characterization of artificial aggregates fabricated with direct sintering method)

  • 김강덕;강승구
    • 한국결정성장학회지
    • /
    • 제21권1호
    • /
    • pp.34-40
    • /
    • 2011
  • 무기성 폐기물인 준설토를 원료로 인공골재를 제조함에 있어, 직화소성법을 이용하여 소성온도(1100 및 $1200^{\circ}C$)와 시간(10~60 min)을 변수로 하여 인공골재의 부피비중, 흡수율 그리고 미세구조를 제어하였다. 또한 직화소성과 기존에 발표된 승온소성의 방법 차이에 따른 인공골재의 물성을 비교 분석하였다. 직화소성 시, 소성온도가 $1100^{\circ}C$에서 $1200^{\circ}C$로 증가하면, 껍질의 두께가 증가함과 동시에 블랙 코어 부분의 기공크기가 증가하면서 골재의 부피비중이 1.0 이하를 나타내었다. 또한 같은 소성온도에서 소성시간이 증가할수록 블랙코어의 단면적이 감소하고, 껍질의 두께가 증가하면서 흡수율이 감소하였다. 부피비중 1.0 이하의 인공골재는 직화소성이나 승온소성으로 제조된 경우 모두 블랙 코어부분의 미세구조가 서로 비슷한 경향을 나타내었다. 반면, 껍질(shell)의 미세구조는 승온소성된 경우에 더 치밀한 구조를 나타냈으며, 따라서 직화소성된 골재의 흡수율이 상대적으로 높았다. 이로서 직화소성법은 세라믹 담체 또는 흡착제등에 적용될 인공골재 제조에 적합한 방법임을 알 수 있었다.

Staphylococcus epidermidis 를 이용한 납 이온의 축적에 관한 연구 (The Uptake of Lead Ion with Staphylococcus epidermidis)

  • 김종혜;김말남
    • 미생물학회지
    • /
    • 제30권4호
    • /
    • pp.310-315
    • /
    • 1992
  • 수용액으로부터 $Pb^{2+}$ 의 흡수와 분리를 Staphylococcus epidermidis 를 이용하여 조사하였다. 흡수된 $Pb^{2+}$의 양을 초기 $Pb^{2+}$ 의 양에 대한 비율로 나타낸 것을 흡수율이라고 정의할 경우, 세균체의 농도가 높을수록 흡수율은 증가하였으며 세균체 단위 중량당 흡수율은 감소하였다. $Pb^{2+}$ 의 흡수율은 수용액의 pH 가 상승함에 따라 점차 증가하다가 최고치를 나타낸 후 감소하는 경향을 보였으며 $Pb^{2+}$ 의 농도가 증가할수록 흡수율의 최고치는 더 낮은 pH 에서 나타났다. HCI 과 EDTA 는 효과적인 탈락체로 작용하였으며 흡수와 탈착 cycle 의 횟수에 따른 세균체의 $Pb^{2+}$에 대한 흡수 능력에는 거의 변화가 없었다.$Pb^{2+}$ 이 다른 중금속 이온과 함께 혼재할 경우 세균내의 결합위치에 대한 경쟁적인 흡수로 인하여 $Pb^{2+}$ 의 흡수율이 변화하였으며, 공존하는 중금속 이온의 이온 반경이 작을수록$Pb^{2+}$ 의 흡수율이 더 크게 감소하였다.

  • PDF

분리막을 이용한 공기 중 이산화탄소 제거 기술 (Membrane-based Direct Air Capture Technologies)

  • 유승연;박호범
    • 멤브레인
    • /
    • 제30권3호
    • /
    • pp.173-180
    • /
    • 2020
  • 전 세계 화석 연료 사용이 지속적으로 증가함에 따라 공기 중 이산화탄소(CO2) 농도가 수 세기에 걸쳐 증가하고 있다. 대기로의 CO2 배출을 줄이기 위한 방법으로, 주요 배출원인 발전소와 공장에 적용할 수 있는 이산화탄소 포집 및 저장(carbon capture and sequestration, CCS) 기술이 개발되고 있다. 기후 변화 완화 정책에 따라 negative emission 기술로 언급되는 공기 중 CO2 직접 포집 기술(direct air capture, DAC)은 CO2 농도가 0.04%로 매우 낮기 때문에 기존의 CCS 기술에 적용된 기술과 달리 흡착제를 이용한 저농도 CO2 포집 연구에 집중되어 있다. DAC 분야는 주로 CO2의 흡착을 이용한 습식 흡착제, 건식 흡착제, 아민 기능화된 소재, 이온교환 수지 등이 연구되었다. 흡착제 기반 기술은 흡착제 재생에 따른 고온 열처리 공정이 필요하기 때문에 추가적인 에너지 소모가 없는 분리막 기반의 공기 중 CO2 포집 기술의 잠재력이 크다. 분리막은 특히 실내 공기 CO2 저감 환기 시스템 및 실내용 스마트팜(smart farm) 시스템의 연속적인 CO2 공급에 사용될 수 있을 것으로 기대된다. CO2 처리 기술은 기후 변화를 완화하기 위한 수단으로 개발이 지속되어야 하며 효율적인 공정 설계와 소재 성능 향상을 통해 공기 중 CO2 포집의 효율을 높일 수 있을 것이다.

이산화탄소 흡수제의 화학구조별 반응열량 특성 연구 (Analysis of the Heat of Absorption Based on the Chemical Structures of Carbon Dioxide Absorbents)

  • 곽노상;이지현;엄용석;김준한;이인영;장경룡;심재구
    • Korean Chemical Engineering Research
    • /
    • 제50권1호
    • /
    • pp.135-140
    • /
    • 2012
  • 반응열량계를 사용하여 1, 2, 3차 아민 수용액과 이산화탄소의 반응열을 각각 측정하였다. 이를 통해 MEA(monoethanolamine, 1차 아민), EAE(2-(ethylamino) ethanol, 2차 아민), MDEA (N-methyldiethanolamine, 3차 아민) 30 wt% 수용액이 $40^{\circ}C$에서 이산화탄소와 반응시 발생하는 반응열을 측정하고 이를 $CO_2$의 loading ratio에 따라 어떻게 변화하는지 평가하였다. 또한, 입체장애 구조를 가지는 AMP(2-amino-2-methyl-1-propanol, 1차 아민), DEA(diethanolamine, 2차 아민), TEA(triethanolamine, 3차 아민) 30 wt% 수용액의 반응열을 각각 측정하여 입체장애 구조가 반응열에 미치는 영향을 살펴보았다. 그 결과, 흡수제의 입체장애 유무와 관계없이 1차 > 2차 > 3차 아민 순으로 반응열이 증가함을 확인하였다. 그리고 입체장애 아민이 동일 차수의 비 입체장애 아민보다 상대적으로 반응열이 낮지만 그 차이는 크지 않음을 확인하였다.

연소 전 이산화탄소 회수를 위한 흡수제 및 촉매의 수력학적 특성 (Hydrodynamic Characteristics of Absorbent and Catalyst for Pre-combustion CO2 Capture)

  • 류호정;윤주영;이동호;선도원;박재현;박영성
    • 청정기술
    • /
    • 제19권4호
    • /
    • pp.437-445
    • /
    • 2013
  • 건식 이산화탄소 흡수제를 사용하는 연소 전 이산화탄소 포집용 회수증진수성가스화(sorption enhanced water gas shift, SEWGS) 시스템을 개발하기 위해 이산화탄소 흡수제의 수력학 특성을 측정 및 해석하였다. 기포유동층 조건에서 시스템을 조업하기 위해 이산화탄소 흡수제의 최소유동화속도를 측정하였으며 조업변수의 영향을 해석하였다. 최소유동화속도는 압력과 온도가 증가함에 따라 감소하였으며 층직경이 증가함에 따라 감소하는 경향을 나타내었다. 연속적인 이산화탄소 흡수-재생 조업조건을 결정하기 위해 고체순환속도에 미치는 조업변수의 영향을 측정 및 해석하였다. 고체순환속도는 10~65 kg/h 범위에서 변화시킬 수 있었으며 고체분사노즐의 유속, 재생반응기의 유속 및 고체층 높이가 증가함에 따라 증가하는 경향을 나타내었다.

요중 3-phenoxybenzoic acid 미량 분석 및 pyrethroid계 살포자 노출 평가 (Determination of 3-phenoxybenzoic Acid in Urine and Exposure Assessment of Pyrethroid Insecticides to Human Being)

  • 서종철;송재석;최홍순
    • 농약과학회지
    • /
    • 제11권2호
    • /
    • pp.87-94
    • /
    • 2007
  • 본 연구는 Pyrethroid계 살충제인 deltamethrin의 작업자 노출을 평가하기 위해 약제살포 환경의 공기중 농도분석과 아울러 인체내에 흡수되어 요중으로 대사되는 산물인 3-PBA의 최적 분석법을 확립하였고, deltamethrin과 3-PBA간의 상관성을 분석하였다. 3-PBA의 가수분해 최적 조건은 시료에 HCl을 첨가하여 pH1 로 조절한 후 $90^{\circ}C$에서 60분 동안 반응시켰을 때 이었다. 요 시료는 Amberlite XAD-16에 흡착시킨 후 acetone을 0.1 mL $min^{-1}$의 속도로 3mL에서 최고의 회수율을 나타내었다. 공기중 deltamethrin의 농도는 N.D. ${\sim}0.00079\;mg\;m^{-3}$이었고, 요중 3-PBA 농도는 $467.5{\pm}2.4\;{\mu}g\;g^{-1}$ creatinine이었다.

PE 필름과 스치로폴 상자를 이용한 생강저장시 탄산가스 흡착제의 효과 (Effects of $CO_2$ Absorbent in the PE Film Bag and Styrofoam Box during the Ginger Storage)

  • 최윤희;김명숙
    • 한국식품저장유통학회지
    • /
    • 제8권3호
    • /
    • pp.286-290
    • /
    • 2001
  • PE필름과 스티로폴 상자를 이용한 생강 저장시 탄산가스 흡착제 및 저장 온 .습도가 생강의 저장성에 미치는 영향을 구명하기 위하여 PE필름이나 스티로폴 상자에 생강을 저장하여 온 습도와 환기공수 및 탄산가스 흡착제 처리에 따른 효과를 검토해 본 결과는 다음과 같다. PE 필름 포장에 의해 중량감소가 현저하게 억제되었으며 0.05 mm보다 0.08 mm에서 중량감소율은 낮았으나 부패율 및 곰팡이발생율이 높았고, 저장온도별로는 15$^{\circ}C$에 비하여 1$0^{\circ}C$에서 중량감소율이 낮고 건전율이 높았으며 저장중 발아가 되지 않아 저장성이 양호하였다. PE필름 두께가 얇고 환기공수가 많을수록 중량감소율은 높았으나 건전율은 0.05 mm에서는 직경 6 mm 크기의 환기공 1개 처리구가, 0.08 mm에서는 환기공 3개 처리구에서 높았으며, 탄산가스 흡착제를 넣어 줌으로써 무처리에 비해 포장내 $CO_2$ 농도가 낮아지고, 부패율 및 곰팡이 발생율이 낮았다. 스티로폴 상자를 이용할 때에도 탄산가스 흡착제 처리로 건전율이 높아졌으며 활성탄이 나 소석회간에 큰 차이는 없었고 상대습도 65%에 비하여 92%에서 건전율이 높았으나, 10% 내외의 발아율을 나타냈다. 이상의 결과로 생강저장 적정 온.습도는 1$0^{\circ}C$, 92% 이며, 저장시 소석회를 처리하므로서 저장성을 높일 수 있을 것으로 사료된다.

  • PDF

Ca계 및 Na계 흡수제의 건식 탈황 특성 비교 (Comparision of Ca- and Na- Based Dry Sorbent in Desulfurization Characteristics)

  • 문승현;현주수
    • 대한환경공학회지
    • /
    • 제31권1호
    • /
    • pp.21-28
    • /
    • 2009
  • Ca계 및 Na계 탈황제를 대상으로 열중량 분석실험과 승온탈리 실험을 수행하여 탈황제의 열적안정성, 집진기 전단 온도인 $250^{\circ}C$에서 탈황 성능, 그리고 상온에서 흡수용량 등을 비교하여 아래와 같은 결론을 도출하였다. 소석회($Ca(OH)_2$)는 약 $390^{\circ}C$에서 열 분해되기 시작하여 480~$500^{\circ}C$에 이르면 완전하게 분해되었다. 열분해 결과 생성된 생석회(CaO)의 무게는 최초 소석회 무게의 76%로 감소하였다. 중탄산나트륨($NaHCO_3$)은 약 $95^{\circ}C$에서부터 분해되기 시작하여 $190^{\circ}C$ 이하의 온도에서 완전하게 분해되어 처음 도입된 중탄산나트륨 무게와 비교하여 약 63%로 감소하였다. $250^{\circ}C$에서 실시한 열중량 분석 결과, 무수탄산나트륨($Na_2CO_3$)의 경우에는 탈황제 무게의 35%에 해당하는 $SO_2$를 흡수할 수 있고, 생석회는 15.6%, 소석회는 6.5%까지 $SO_2$를 흡수할 수 있는 것으로 나타났다. $250^{\circ}C$에서 초기반응 속도를 비교하면, Ca계 탈황제의 경우에는 초기 미반응 시간이 있는 반면에 Na계 탈황제인 무수탄산나트륨에서는 이러한 초기 미반응 시간이 없어, Ca계 반응제의 경우보다 Na계 탈황제의 경우에 $SO_2$와 더 빠른 반응이 진행되었다. 상온에서 실시한 승온탈리 실험 결과, Na계인 무수탄산나트륨보다는 Ca계인 소석회가 더 많은 $SO_2$를 흡수하였다. 따라서 저온에서는 Ca계인 소석회가 적절하고 고온에서는 무수탄산나트륨이 더 적절한 탈황제인 것으로 판단된다.