• Title/Summary/Keyword: Absorbent

Search Result 487, Processing Time 0.032 seconds

Reactive Extrusion of Starch-g-Polyacrylonitrile in the Preparation of Absorbent Materials

  • Yoon, Kee-Jong;Carr, M.E.;Bagley, E.B.
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1990.06b
    • /
    • pp.8-8
    • /
    • 1990
  • A new method for the graft polymerization of acrylonitrile onto starch is presented. Graft polymerization of acrylonitrile onto starch and the subsequent hydrolysis in sodium hydroxide solution to prepare absorbents is well known. This process has been utilized to produce the commercial product, Super Slurper. In a typical batch process, ~5% starch in water mixture is gelatinized at $95^{\circ}C$ under stirring for 1 hour then cooled to room temperature. The graft polymerization itself is carried out for approximately 2 hours at $25~30^{\circ}C$ on the gelatinized starch by eerie ion initiation. In this study, graft polymerization of acrylonitrile onto starch via a reactive extrusion process which is a continuous, efficient process is described. Initial concentration of starch in water is 35% and the reaction temperatures are between $50~80^{\circ}C$. However, the most significant difference in the reactive extrusion process is the short time in which the graft polymerization takes place. Preliminary results on the properties of graft polymerization products obtained from the reactive extrusion process are compared to those obtained from the batch process as well as the absorbency of the hydrolyzed samples. Absorbent material has also been prepared by sequential grafting and saponification in the extruder followed by a 2 hour heat treatment of the extrudate in an air circulated oven at $100^{\circ}C$.

  • PDF

Prediction of removal percentage and adsorption capacity of activated red mud for removal of cyanide by artificial neural network

  • Deihimi, Nazanin;Irannajad, Mehdi;Rezai, Bahram
    • Geosystem Engineering
    • /
    • v.21 no.5
    • /
    • pp.273-281
    • /
    • 2018
  • In this study, the activated red mud was used as a new and appropriate adsorbent for the removal of ferrocyanide and ferricyanide from aqueous solution. Predicting the removal percentage and adsorption capacity of ferro-ferricyanide by activated red mud during the adsorption process is necessary which has been done by modeling and simulation. The artificial neural network (ANN) was used to develop new models for the predictions. A back propagation algorithm model was trained to develop a predictive model. The effective variables including pH, absorbent amount, absorbent type, ionic strength, stirring rate, time, adsorbate type, and adsorbate dosage were considered as inputs of the models. The correlation coefficient value ($R^2$) and root mean square error (RMSE) values of the testing data for the removal percentage and adsorption capacity using ANN models were 0.8560, 12.5667, 0.9329, and 10.8117, respectively. The results showed that the proposed ANN models can be used to predict the removal percentage and adsorption capacity of activated red mud for the removal of ferrocyanide and ferricyanide with reasonable error.

Reaction Characteristics of WGS Catalyst with Fraction of Catalyst in a Batch Type Fluidized Bed Reactor (회분식 유동층 반응기에서 촉매함량 변화에 따른 WGS 촉매의 반응특성)

  • Ryu, Ho-Jung;Hyun, Ju-Soo;Kim, Ha-Na;Hwang, Taek-Sung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.465-473
    • /
    • 2011
  • To find the optimum mixing ratio of WGS catalyst with $CO_2$ absorbent for SEWGS process, water gas shift reaction tests were carried out in a fluidized bed reactor using commercial WGS catalyst and sand (as a substitute for $CO_2$ absorbent). WGS catalyst content, gas velocity, and steam/CO ratio were considered as experimental variables. CO conversion increased as the catalyst content increased during water gas shift reaction. Variations of the CO conversion with the catalyst content were small at low gas velocity. However, those variations increased at higher gas velocity. Within experimental range of this study, the optimum operating condition(steam/CO ratio=3, gas velocity = 0.03 m/s, catalyst content=10 wt.%) to get high CO conversion and $CO_2$ capture efficiency was confirmed. Moreover, long time water gas shift reaction tests up to 20 hours were carried out for two cases (catalyst content = 10 and 20 wt.%) and we could conclude that the WGS reactivity at those conditions was maintained up to 20 hours.

Properties of Water-Based According to Particle Size of Granular Activated Clay (입상형 활성백토의 입자크기에 따른 수성도료의 특성)

  • Choi, Byung-Cheol;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.19-20
    • /
    • 2021
  • In order to reduce the emission of harmful substances that degrade indoor air quality, the Ministry of Environment strengthened the standards for the content of VOCs in paints to supply and sell eco-friendly paints. In this related study, an eco-friendly paint mixed with a powder-type absorbent material was prepared and its characteristics were reviewed. As the amount of powder-type absorbent material increased, the workability (viscosity, peeling, etc) decreased. Accordingly, this study aims to examine which particle size is suitable according to the particle size of the granular adsorbent while improving the problem of the powdery adsorbent by using the granular adsorbent. As an experimental plan, the particle size of granular activated clay is selected to be 0.250, 0.425, 0.710(mm), and the decrease rate of VOCs concentration and impact resistance are reviewed. As a result of the experiment, as the particle size of the granular activated clay increased, the decrease rate of the VOCs concentration increased and the impact resistance improved. Therefore, considering the problems that occur after actual painting, the particle size of granular activated clay of 0.425mm is suitable.

  • PDF

Settlement and Mass Change of the Porous Concrete Using Super Absorbent Polymer (고흡수성 수지를 활용한 다공 구조 콘크리트 가능성 연구)

  • Jo, Jae-Hyun;Park, Jae-Woong;Lim, Gun-Su;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.311-312
    • /
    • 2023
  • In this study, porous concrete with improved functionality was developed by using superabsorbent polymer (SAP) to provide rooting space for plants. The depth of settlement and mass change according to the substitution and addition rate of SAP were determined by investigating the functional performance of SAP and the volume change upon saturation. Test results indicated the depth of penetration settlement increased as the substitution rate of SAP increased, but the mass change could not be confirmed as the addition rate of SAP increased. The instability of the specimens due to the excessive volume change of SAP, as well as the osmotic pressure phenomenon according to the pH concentration, were identified as the cause. Therefore, future studies are needed to investigate the appropriate substitution and addition rate of SAP, as well as to reduce the osmotic pressure phenomenon according to the pH concentration, which would contribute to the improvement of the functional performance of vegetation concrete.

  • PDF

Effect of 1-methylcyclopropene and ethylene-absorbent treatments on quality changes of Prunus mume fruit during storage (1-MCP 처리 및 에틸렌 흡착제가 '백가하' 매실 저장에 미치는 영향)

  • Kim, Dae-Hyun;Bae, Jung Mi;Park, Jin Ju;Choi, Jeong Hee;Ku, Kyung Hyung;Lim, Jeong-Ho
    • Food Science and Preservation
    • /
    • v.23 no.4
    • /
    • pp.479-487
    • /
    • 2016
  • This study was conducted to investigate the effect of 1-methylcyclopropene (1-MCP) and ethylene-absorbent on the qualities of Prunus mume fruit. Prunus mume fruits were stored without film packaging (Cont), packed in LDPE film (Cont-P), and packed with ethylene-absorbent (Cont-PE). Fruits were treated with 1-MCP (1 ppm) for 24 hr at $1^{\circ}C$. After treatment, fruits were packed in LDPE film (MCP-P) and with ethylene-absorbent (MCP-PE) and then stored at $1^{\circ}C$ for 8 weeks. Total soluble solids increased during storage but decreased after 6 weeks while total acidity decreased during storage. Cont was almost completely decayed after 8 weeks of storage while Cont-P, Cont-PE, MCP-PE, and MCP-P were 46, 69, 83, and 5% decayed, respectively. L value decreased but a value increased during storage in all samples. Firmness of peel and flesh of samples decreased gradually for 8 weeks. Respiration rate did not show any significant difference among samples. Ethylene production of Cont showed $0.05{\mu}L/kg/h$ but immediately after 1-MCP treatment, it showed $0.02{\mu}L/kg/h$. Oxalic and malic acids decreased while citric acid increased during storage; fructose and glucose substantially decreased after 8 weeks whereas sorbitol and sucrose increased upto 4 weeks and then decreased thereafter. Based on these results, packing the fruits treated with 1-MCP could extend the freshness of Prunus mume fruit.

Effect of Internal Curing by Super-Absorbent Polymer (SAP) on Hydration, Autogenous Shrinkage, Durability and Mechanical Characteristics of Ultra-High Performance Concrete (UHPC) (고흡수성 수지(SAP)를 이용한 내부양생이 초고성능 콘크리트(UHPC)의 수화반응, 자기수축, 내구성 및 역학적 특성에 미치는 영향)

  • Kang, Sung-Hoon;Moon, Juhyuk;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.317-328
    • /
    • 2016
  • This research intends to understand the impact of super-absorbent polymer (SAP) as an internal curing agent in Ultra-High Performance Concrete (UHPC). Two different types of SAPs of acrylic acid (SAP_AA) and acrylic acid-co-acrylamide (SAP_AM) were examined with UHPC formulation. Isothermal calorimetry and x-ray diffraction experiments revealed the impact of polymers with the different chemical bonds on cement hydration. To test its feasibility as a shrinkage reducing admixture for UHPC, a series of experiments including flowability, compressive strength, rapid chloride permeability and autogenous shrinkage profile was performed. While both SAPs showed a reduction in autogenous shrinkage, it has been concluded that the SAP size and chemical form significantly affect the performance as an internal curing agent in UHPC by controlling cement hydration and porosity modification. Between the tested SAPs, SAP_AM which absorbs more water in UHPC than SAP_AA, shows better mechanical and durability performance.

Effect of Packaging Material and Oxygen Absorbant on Quality Properties of Yukwa (포장재질 및 탈산소재가 유과의 품질특성에 미치는 영향)

  • Lee, Yong-Hwan;Kum, Jun-Seok;Ahn, Yong-Sik;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.728-736
    • /
    • 2001
  • Effects of packaging material and oxygen absorbant on physical and chemical properties of Yukwu were studied during storage to develop packaging conditions. The packaging materials used were PET/EVOH $(16\;{\mu}m)/PL$ : P1 and PET/EVOH $(24\;{\mu}m)/PL$ : P2 with or without oxygen absorbent (E1A : P1 and E2A : P2 for w/ $O_2$, absorbent, E1EA : P1 and E2EA : P2 for w/o $O_2$, absorbent). Color values for Yukwu indicated that L values of E1A, E1EA, E2A and E2EA were decreased during storage while those b values were increased. Hardness and chewiness of Yukwa were generally decreased, however those of E1A and E1EA were rather increased after 6 weeks of storage. Acid value of E2A had maintained less than 2.0 during 12 weeks of storage. E1A, E2A had the below of 20 in peroxide during 12 weeks. Aroma data by using electronic nose showed that there was no difference after 6 week storage time in different packaging materials. Sensory evaluation (Yukwa odor and rancid odor) showed very similar results with electronic nose one. E2A had the highest value of overall acceptability for sensory evaluation. Hardness and cheweness in physical measurement results had the highest correlation with hardness, crispness, overall-acceptability in sensory evaluation results.

  • PDF

Effects of $CO_2$ Absorbent in the PE Film Bag and Styrofoam Box during the Ginger Storage (PE 필름과 스치로폴 상자를 이용한 생강저장시 탄산가스 흡착제의 효과)

  • 최윤희;김명숙
    • Food Science and Preservation
    • /
    • v.8 no.3
    • /
    • pp.286-290
    • /
    • 2001
  • Ginger was stored in the 0.05mm and 0.08mm of PE film bags and the styrofoam box. During the ginger storage, weight losses in the PE film bags were effectively supressed than in the control bag, and storage was better in the 0.08mm PE film bag while the spoilage of ginger was higher than in 0.05mm bag. The effective storage temperature was 10$^{\circ}C$ at which was no scouting during the storage. And the perforation in the PE film bag helped the healthy ginger ratio. Single perforation of 6an diameter was good for 0.05mm film and three for 0.08mm film. When CO$_2$absorbent was added into the film bag, the spoilage and mold occurence was lowered. In the styrofoam box, the healthy ginger ratio also increased by incorporating the absorbents, but there were no great differences between activated charcoal and calcium hydroxide.

  • PDF

Synthesis and Application of cPSMA-PSMA Microcapsule Absorbent for Cement Mortars (시멘트 모르타르용 cPSMA-PSMA 마이크로캡슐 흡수제 제조 및 적용)

  • Hwang, Ki-Seob;Jang, Seok-Soo;Jung, Yong-Wook;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.216-222
    • /
    • 2012
  • We synthesized microcapsule absorbent with crosslinked poly(styrene-$alt$-maleic anhydride) (PSMA) as a core and PSMA as a shell by a precipitation polymerization method for the delayed absorption of excess water in cement mortar. cPSMA-PSMAs with core-shell structure were synthesized with ratios of 1/1, 1/2 and 1/3 as core monomer mass to shell monomer mass to control shell thickness. We observed the hydrolysis of PSMA in cement-saturated aqueous solution by a FTIR spectrometer. We observed good core-shell structure microcapsules for 1/2(cPSMA #3), but observed incomplete core-shell structure for 1/1(cPSMA #2) and 1/3(cPSMA #4) of core/shell monomer ratios. The swelling ratio of cPSMA #3 in cement-saturated aqueous solution was increased until 20 min. After that it was decreased until 2 hrs swelling time, and they started to increase again. The viscosities of cement paste with cPSMA #3 microcapsules were very slowly increased until 1 hr and increased fast after 1.5 hrs. Cement mortar with 0.5 wt% cPSMA #1 having only core part showed about 5% increase in compressive strength compared to that of plain cement mortar. cPSMA #3 added cement mortar showed the highest compressive strength with 7% increase.