• 제목/요약/키워드: Abrasive wear

검색결과 286건 처리시간 0.022초

An Experimental Investigation on the Contamination Sensitivity of an Automotive Fuel Pump

  • Lee Jae-Cheon;Shin Hyun-Myng
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.51-55
    • /
    • 2005
  • This study addresses the contamination sensitivity test of a typical fuel pump for an automotive vehicle. The objective of the study is to find the contamination sensitivity coefficient of a fuel pump on specific contaminant particle sizes so that an optimal fuel filter could be selected. To achieve the objective, the degradation of discharge flow rate of the fuel pump is measured under the experiments of various contaminants size ranges of ISO test dust up to $80\;{\mu}m$. The fundamental theory of contamination sensitivity is introduced and the contamination sensitivity coefficients are estimated using the experimental data. Maximum contamination sensitivity coefficient of $5\chi\;10^{-6}\;L/min{\cdot}Ea$ is found in the contaminant size range of $40\;{\mu}m\~50\;{\mu}m$. The magnified picture of the surface of vane disc reveals that the abrasive wear is the principal cause of discharge flow rate degradation. Hence, this study reveals that a high efficiency filter for contaminant particles especially in the size range of $30\;{\mu}m\~70\;{\mu}m$ especially should be used to maintain the service life of the fuel filter.

초음파타원진동절삭가공법에 의한 Co-Cr-Mo 합금의 경면가공 (Mirror Finishing of Co-Cr-Mo Alloy by Ultrasonic Elliptical Vibration Cutting Method)

  • 송영찬;전중건일;삼협준도
    • 한국정밀공학회지
    • /
    • 제25권3호
    • /
    • pp.56-62
    • /
    • 2008
  • The biocompatibility and the fatigue strength of Co-Cr-Mo alloy are excellent, so it is used well for the material of artificial joints. The head of artificial joint needs mirror surface for reduction of abrasive resistance. Mirror finishing of Co-Cr-Mo alloy with geometrically defined single crystal diamond cutting tools is handicapped by micro chipping of tool edge. In general, it is said that the micro chipping of diamond tool is caused by work hardening of Co-Cr-Mo alloy for the cut. In the present research, mirror finishing of Co-Cr-Mo alloy by applying ultrasonic elliptical vibration cutting was carried out. The experimental results show that the micro chipping of diamond tool was suppressed and the tool wear was remarkably reduced as compared with the ordinary diamond cutting without elliptical vibration motion. It was confirmed that the good mirror surface of maximum surface roughness of 25 nmP-V was obtained for the cutting length of about 14 m. It is expected that mirror finishing of Co-Cr-Mo alloy can be achieved by applying ultrasonic elliptical vibration cutting practically.

극지 운항 선박 Ice Belt Zone의 도장 사양 설계 연구 (A Study on Coating Performance Design for Ice Belt Zone of the Arctic Vessels)

  • 백윤호;박충서;소용신
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2013년도 특별논문집
    • /
    • pp.66-72
    • /
    • 2013
  • The demand for an ice class ship is rising expected to rise according to the increase of energy consumption and the opening of arctic sea routes. Ice class ship should be designed to cope with the severe environmental conditions of arctic sea such as a high mechanical impact and abrasion damage, caused by pack ice, ice bergs and low temperature. The ice class ship hulls are coated with an anti-abrasion and low friction coating such as a solvent free epoxy or high solid-volume epoxy. These coatings require two-component heating pump and a high grade surface preparation. In this study, the coating performances for the arctic vessels, such as puncture absorbed energy, abrasive wear loss, friction coefficients and impact absorbed energy were evaluated. Based on this study, a proper coating performance specification for the arctic vessels was proposed and coating selection guideline in terms of coating performance and workability was also established.

  • PDF

화학기계적 연마(CMP) 공정에서의 트라이볼로지 연구 동향 (Tribology Research Trends in Chemical Mechanical Polishing (CMP) Process)

  • 이현섭
    • Tribology and Lubricants
    • /
    • 제34권3호
    • /
    • pp.115-122
    • /
    • 2018
  • Chemical mechanical polishing (CMP) is a hybrid processing method in which the surface of a wafer is planarized by chemical and mechanical material removal. Since mechanical material removal in CMP is caused by the rolling or sliding of abrasive particles, interfacial friction during processing greatly influences the CMP results. In this paper, the trend of tribology research on CMP process is discussed. First, various friction force monitoring methods are introduced, and three elements in the CMP tribo-system are defined based on the material removal mechanism of the CMP process. Tribological studies on the CMP process include studies of interfacial friction due to changes in consumables such as slurry and polishing pad, modeling of material removal rate using contact mechanics, and stick-slip friction and scratches. The real area of contact (RCA) between the polishing pad and wafer also has a significant influence on the polishing result in the CMP process, and many researchers have studied RCA control and prediction. Despite the fact that the CMP process is a hybrid process using chemical reactions and mechanical material removal, tribological studies to date have yet to clarify the effects of chemical reactions on interfacial friction. In addition, it is necessary to clarify the relationship between the interface friction phenomenon and physical surface defects in CMP, and the cause of their occurrence.

3차원 수치모의를 통한 침사지에서의 부유사 밀도류 해석 (Three-dimensional numerical modeling of sediment-induced density currents in a sedimentation basin)

  • 안상도;김기호;박원철
    • 상하수도학회지
    • /
    • 제27권3호
    • /
    • pp.383-394
    • /
    • 2013
  • A sedimentation basin is used to remove suspended sediments which can cause abrasive and erosive wear on hydraulic turbines of hydropower plants. This sediment erosion not only decreases efficiency of the turbine but also increases maintenance costs. In this study, the three-dimensional numerical simulations were carried out on the overseas hydropower project. The simulations of flow and suspended sediment concentration were obtained using FLOW-3D computational fluid dynamics code. The simulations provide removal efficiency of a sedimentation basin based on particle sizes. The influence of baffles on the flow field and the removal efficiency of suspended sediments in the sedimentation basin has been investigated. This paper also provides the numerical simulations for sediment-induced density currents that may occur in the sedimentation basin. The simulation results indicate that the formation of density currents decreases the removal efficiency. When a baffle is installed in the sedimentation basin, the baffle provides intensive settling zones resulting in increasing the sediments settling. Thus the enhanced removal efficiency can be achieved by installing the baffle inside the sedimentation basin.

고강도 알루미늄 합금의 Fretting Fatigue에 관한 연구 (A Study on Fretting Fatigue of High Strength Aluminum Alloys)

  • 이학선;김상태;최성종;양현태;김재경;이동석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.168-173
    • /
    • 2004
  • Fretting is a kind of surface degradation mechanism observed in mechanical components and structures. The fretting damage decrease in 50-70% of the plain fatigue strength. This may be observed in aircraft, automobile and nuclear power plant used in special environment and various loading conditions. In the present study, the characteristics of the fretting fatigue are investigated using the two aluminum alloy(Al2024-T3511 and Al7050-T7451). Through the experiment, it is found that the fretting fatigue strength of the Al7050-T7451 alloy decreased about 50% from the plain fatigue strength, while the fretting fatigue strength of the Al2024-T3511 alloy decreased about 45%. The tire track was widely observed in fracture surface area of oblique crack which was induced by contact pressure. These results can be the basic data to the structural integrity evaluation of aluminum alloy subjected to fretting damage.

  • PDF

나노 세리아 슬러리를 이용한 STI CMP에서 나노토포그라피 시뮬레이션 (Nanotopography Simulation of Shallow Trench Isolation Chemical Mechanical Polishing Using Nano Ceria Slurry)

  • 김민석;;강현구;박재근;백운규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.239-242
    • /
    • 2004
  • We investigated the nanotopography impact on the post-chemical mechanical polishing (post-CMP) oxide thickness deviation(OTD) of ceria slurry with a surfactant. Not only the surfactant but also the slurry abrasive size influenced the nanotopography impact. The magnitude of the post-CMP OTD increased with adding the surfactant in the case of smaller abrasives, but it did not increase in the case of larger abrasives, while the magnitudes of the nanotopography heights are all similar. We created a one-dimensional numercal simulation of the nanotopography impact by taking account of the non-Prestonian behavior of the slurry, and good agreement with experiment results was obtained.

  • PDF

촉매 함량 변화에 따라 합성된 나일론의 마찰 특성에 관한 연구 (Study on the Frictional Properties of Nylons Synthesized by Varying Catalyst Content)

  • 정대원;강석춘
    • 폴리머
    • /
    • 제29권1호
    • /
    • pp.14-18
    • /
    • 2005
  • ${\varepsilon}$-카프로락탐(CL)의 음이온 중합에 있어서 개시제의 양을 고정하고 촉매 양을 변화시키면서 합성한 나일론의 분자량, 기계적 물성 및 마찰 특성에 관하여 연구하였다. 전체적으로 촉매/개시제 비율이 높을수록 중합속도, 반응전 환율 및 분자량은 증가하였으며, 충격강도를 제외한 물성도 향상되었으나, 촉매/개시제 비율 1.0% 이상에서는 큰 변화가 나타나지 않았다. 한편, 나일론의 마찰 특성은 기계적 물성 중에서도 인장강도 및 경도에 의해 직접적으로 영향을 받는 것으로 나타났다. 마찰계수, 응력(p)과 운동속도(v)의 곱인 PV 한계 및 상대마모량의 측정 결과를 종합하면, 촉매/개시제 비율 1.0% 하에서 제조된 나일론이 마찰 기계요소로서는 최적의 성질을 갖는 것으로 밝혀졌다.

자동차 연료펌프의 오염민감도 실험 연구 (An Experimental Investigation on The Contamination Sensitivity of An Automotive Fuel Pump)

  • 이재천;장지현;신현명
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.102-108
    • /
    • 2004
  • This study addresses the contamination sensitivity test of a typical fuel pump for automotive vehicle. The objective of the study is to find the contamination sensitivity coefficient of fuel pump on specific contaminant particle sizes so that optimal fuel filter could be selected. To achieve the objective, the degradation of discharge flow rate of fuel pump was measured under the experiments of various contaminants size ranges of ISO test dust up to 80${\mu}{\textrm}{m}$. The fundamental theory of contamination sensitivity was introduced and the contamination sensitivity coefficients were estimated using the experimental data. Maximum contamination sensitivity coefficient of $5{\times}10^{-6}$ L/minㆍEa was found on the contaminant size range of 40${\mu}{\textrm}{m}$∼50${\mu}{\textrm}{m}$. The magnified picture of the surface of vane disc revealed that the abrasive wear was the principal cause of discharge flow rate degradation. Hence, this study revealed that high efficiency filter on the contaminant particle size range of 30${\mu}{\textrm}{m}$∼70${\mu}{\textrm}{m}$ especially should be used to maintain the service lift of the fuel filter.

An Experimental Study on the Ultrasonic Machining Characteristics of Engineering Ceramics

  • Kang Ik Soo;Kim Jeong Suk;Seo Yong Wie;Kim Jeon Ha
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.227-233
    • /
    • 2006
  • Engineering ceramics have many unique characteristics both in mechanical and physical properties such as high temperature hardness, high thermal, chemical and electrical resistance. However, its machinability is very poor in conventional machining due to its high hardness and severe tool wear. In the current experimental study, alumina $(Al_2O_3)$ was ultrasonically machined using SiC abrasives under various machining conditions to investigate the material removal rate and surface quality of the machined samples. Under the applied amplitude of 0.02mm, 27kHz frequency, three slurry ratios of 1:1, 1:3 and 1:5 with different tool shapes and applied static pressure levels, the machining was conducted. Using the mesh number of 240 abrasive, slurry ratio of 1:1 and static pressure of $2.5kg/cm^2$, maximum material removal rate of $18.97mm^3/min$ was achieved. With mesh number of 600 SiC abrasives and static pressure of $3.0kg/cm^2$, best surface roughness of $0.76{\mu}m$ Ra was obtained.