• 제목/요약/키워드: Abrasive Concentration

검색결과 64건 처리시간 0.022초

CMP시 연마입자에 작용하는 마찰력에 관한 연구 (A study on the friction force caused by abrasives in chemical mechanical polishing)

  • 김구연;김형재;박범영;정영석;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1312-1315
    • /
    • 2004
  • Chemical Mechanical Polishing is referred to as a three body tribological system, because it includes two solids in relative motion and the slurry. On the assumption that the abrasives between the pad and the wafer could be a major reason of not only the friction force but also material removal during polishing. The friction force generated by the abrasives was inspected with the change of abrasive size and concentration in this paper. The variation of coefficient of friction with abrasive concentration and size could result from the condition of contact and load balance between wafer and abrasives carried by pad asperity. The simulation was performed in this paper and compared with the result of experiment. The material removal rate also estimated with abrasive concentration and size increasement.

  • PDF

고정입자 패드를 이용한 층간 절연막 CMP에 관한 연구 (The Study of ILD CMP Using Abrasive Embedded Pad)

  • 박재홍;김호윤;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1117-1120
    • /
    • 2001
  • Chemical mechanical planarization(CMP) has emerged as the planarization technique of choice in both front-end and back-end integrated circuit manufacturing. Conventional CMP process utilize a polyurethane polishing pad and liquid chemical slurry containing abrasive particles. There have been serious problems in CMP in terms of repeatability and defects in patterned wafers. Since IBM's official announcement on Copper Dual Damascene(Cu2D) technology, the semiconductor world has been engaged in a Cu2D race. Today, even after~3years of extensive R&D work, the End-of-Line(EOL) yields are still too low to allow the transition of technology to manufacturing. One of the reasons behind this is the myriad of defects associated with Cu technology. Especially, dishing and erosion defects increase the resistance because they decrease the interconnection section area, and ultimately reduce the lifetime of the semiconductor. Methods to reduce dishing & erosion have recently been interface hardness of the pad, optimization of the pattern structure as dummy patterns. Dishing & erosion are initially generated an uneven pressure distribution in the materials. These defects are accelerated by free abrasive and chemical etching. Therefore, it is known that dishing & erosion can be reduced by minimizing the abrasive concentration. Minimizing the abrasive concentration by using Ce$O_2$ is the best solution for reducing dishing & erosion and for removal rate. This paper introduce dishing & erosion generating mechanism and a method for developing a semi-rigid abrasive pad to minimize dishing & erosion during CMP.

  • PDF

Effects of Polymer Adsorption on Stabilities and CMP Performance of Ceria Abrasive Particles

  • Shimono Norifumi;Kawaguchi Masami;Koyama Naoyuki
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권3호
    • /
    • pp.112-117
    • /
    • 2006
  • In this paper we present that the effects of polymer adsorption on stabilities and CMP performance of ceria abrasive particles. Characterization of ceria abrasive particles in the presence of poly(vinyl pyrrolidone) (PVP) was performed by the measurements of adsorbed amounts of PVP, average sizes, and the back scattering intensities of the ceria abrasive particles as functions of PVP molecular weight and PVP concentration. The ceria abrasive particles in the presence of PVP were used to polish $SiO_2\;and\;Si_3N_4$ films deposited on Si wafers in order to understand the effect of PVP adsorption on chemical mechanical polishing (CMP) performance, together with ceria abrasive particles without PVP. Adsorption of PVP on the ceria abrasive particles enhanced the stability of ceria abrasive particles due to steric stabilization of the thick adsorbed layer of PVP. Removal rates of the deposited $SiO_2\;and\;Si_3N_4$ films by the ceria abrasive particles in the presence of PVP were much lower than those in the absence of PVP and their magnitudes were decreased with an increase in the concentration of free PVP chains in the dispersion media. This suggests that the CMP performance in the presence of PVP could be mainly controlled by the hydrodynamic interactions between the adsorbed PVP chains and the free ones. Moreover, the molecular weight dependence of PVP on the removal rates of the deposited films was hardly observed. On the other hand, high removal rate selectivity between the deposited films in the presence of PVP was not observed.

고정입자 패드를 이용한 텅스텐 CMP에 관한 연구 (The Study of Metal CMP Using Abrasive Embedded Pad)

  • 박재홍;김호윤;정해도
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.192-199
    • /
    • 2001
  • Chemical mechanical planarization (CMP) has emerged as the planarization technique of choice in both front-end and back-end integrated circuit manufacturing. Conventional CMP process utilize a polyurethane polishing pad and liquid chemical slurry containing abrasive particles. There hale been serious problems in CMP in terms of repeatability and deflects in patterned wafers. Especial1y, dishing and erosion defects increase the resistance because they decrease the interconnection section area, and ultimately reduce the lifetime of the semiconductor. Methods to reduce dishing & erosion have recently been interface hardness of the pad, optimization of the pattern structure as dummy patterns. Dishing & erosion are initially generated an uneven pressure distribution in the materials. These defects are accelerated by free abrasives and chemical etching. Therefore, it is known that dishing & erosion can be reduced by minimizing the abrasive concentration. Minimizing the abrasive concentration by using CeO$_2$is the best solution for reducing dishing & erosion and for removal rate. This paper introduce dishing & erosion generating mechanism and a method fur developing a semi-rigid abrasive pad to minimize dishing & erosion during CMP.

  • PDF

친수성 고분자를 이용한 고정입자패드의 텅스텐 CMP (Tungsten CMP in Fixed Abrasive Pad using Hydrophilic Polymer)

  • 박범영;김호윤;김형재;김구연;정해도
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.22-29
    • /
    • 2004
  • As a result of high integration of semiconductor device, the global planarization of multi-layer structures is necessary. So the chemical mechanical polishing(CMP) is widely applied to manufacturing the dielectric layer and metal line in the semiconductor device. CMP process is under influence of polisher, pad, slurry, and process itself, etc. In comparison with the general CMP which uses the slurry including abrasives, fixed abrasive pad takes advantage of planarity, resulting from decreasing pattern selectivity and defects such as dishing & erosion due to the reduction of abrasive concentration especially. This paper introduces the manufacturing technique of fixed abrasive pad using hydrophilic polymers with swelling characteristic in water and explains the self-conditioning phenomenon. And the tungsten CMP using fixed abrasive pad achieved the good conclusion in terms of the removal rate, non-uniformity, surface roughness, material selectivity, micro-scratch free contemporary with the pad life-time.

Self-Conditioning을 이용한 고정입자패드의 텅스텐 CMP (Tungsten CMP using Fixed Abrasive Pad with Self-Conditioning)

  • 박범영;김호윤;서현덕;정해도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1296-1301
    • /
    • 2003
  • The chemical mechanical polishing(CMP) is necessarily applied to manufacturing the dielectric layer and metal line in the semiconductor device. The conditioning of polishing pad in CMP process additionally operates for maintaining the removal rate, within wafer non-uniformity, and wafer to wafer non-uniformity. But the fixed abrasive pad(FAP) using the hydrophilic polymer with abrasive that has the swelling characteristic by water owns the self-conditioning advantage as compared with the general CMP. FAP also takes advantage of planarity, resulting from decreasing pattern selectivity and defects such as dishing due to the reduction of abrasive concentration. This paper introduces the manufacturing technique of FAP. And the tungsten CMP using FAP achieved the good conclusion in point of the removal rate, non-uniformity, surface roughness, material selectivity, micro-scratch free contemporary with the pad life-time.

  • PDF

Ruthenium CMP에서 Cerium Ammonium Nitrate와 알루미나 연마 입자가 연마 거동에 미치는 영향 (Effect of Cerium Ammonium Nitrate and Alumina Abrasive Particles on Polishing Behavior in Ruthenium Chemical Mechanical Planarization)

  • 이상호;이승호;강영재;김인권;박진구
    • 한국전기전자재료학회논문지
    • /
    • 제18권9호
    • /
    • pp.803-809
    • /
    • 2005
  • Cerium ammonium nitrate (CAN) and nitric acid was used an etchant and an additive for Ru etching and polishing. pH and Eh values of the CAN and nitric acid added chemical solution satisfied the Ru etching condition. The etch rate increased linearly as the concentration of CAN increased. Nitric acid added solution had the high etch rate. But micro roughness of etched surfaces was not changed before and after etching, The removal rate of Ru film was the highest in $1wt\%$ abrasive added slurry, and not increased despite the concentration of alumina abrasive increased to $5wt\%$. Even Ru film was polished by only CAN solution due to the friction. The highest removal rate of 120nm/min was obtained in 1 M nitric acid and $1wt\%$ alumina abrasive particles added slurry. The lowest micro roughness value was observed in this slurry after polishing. From the XPS analysis of etched Ru surface, oxide layer was founded on the etched Ru surface. Therefore, Ru was polished by chemical etching of CAN solution and oxide layer abrasion by abrasive particles. From the result of removal rate without abrasive particle, the etching of CAN solution is more dominant to the Ru CMP.

CMP 결과에 영향을 미치는 마찰 특성에 관한 연구 (Characteristics of Friction Affecting CMP Results)

  • 박범영;이현섭;김형재;서헌덕;김구연;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제17권10호
    • /
    • pp.1041-1048
    • /
    • 2004
  • Chemical mechanical polishing (CMP) process was studied in terms of tribology in this paper. CMP performed by the down force and the relative motion of pad and wafer with slurry is typically tribological system composed of friction, wear and lubrication. The piezoelectric quartz sensor for friction force measurement was installed and the friction force was detected during CMP process. Various friction signals were attained and analyzed with the kind of pad, abrasive and abrasive concentration. As a result of experiment, the lubrication regime is classified with ηv/p(η, v and p; the viscosity, relative velocity and pressure). The characteristics of friction and material removal mechanism is also different as a function of the kind of abrasive and the abrasive concentration in slurry. Especially, the material removal per unit distance is directly proportional to the friction force and the non~uniformity has relation to the coefficient of friction.

고정입자패드를 이용한 텅스텐 CMP 개발 및 평가 (Development and Evaluation of Fixed Abrasive Pad in Tungsten CMP)

  • 박범영;김호윤;김구연;정해도
    • 한국기계가공학회지
    • /
    • 제2권4호
    • /
    • pp.17-24
    • /
    • 2003
  • Chemical mechanical polishing(CMP) has been applied for planarization of topography after patterning process in semiconductor fabrication process. Tungsten CMP is necessary to build up interconnects of semiconductor device. But the tungsten dishing and the oxide erosion defects appear at end-point during tungsten CMP. It has been known that the generation of dishing and erosion is based on the over-polishing time, which is determined by pattern selectivity. Fixed abrasive pad takes advantage of decreasing the defects resulting flam reducing pattern selectivity because of the lower abrasive concentration. The manufacturing technique of fixed abrasive pad using hydrophilic polymers is introduced in this paper. For application to tungsten CMP, chemicals composed of oxidizer, catalyst, and acid were developed. In comparison of the general pad and slurry for tungsten CMP, the fixed abrasive pad and the chemicals resulted in appropriate performance in point of removal rate, uniformity, material selectivity and roughness.

  • PDF

STI CMP용 가공종점 검출기술에서 나노 세리아 슬러리 특성이 미치는 영향 (Effect of the Nano Ceria Slurry Characteristics on end Point Detection Technology for STI CMP)

  • 김성준;강현구;김민석;백운규;박재근
    • 반도체디스플레이기술학회지
    • /
    • 제3권1호
    • /
    • pp.15-20
    • /
    • 2004
  • Through shallow trench isolation (STI) chemical mechanical polishing (CMP) tests, we investigated the dependence of pad surface temperature on the abrasive and additive concentrations in ceria slurry under varying pressure using blanket film wafers. The pad surface temperature after CMP increased with the abrasive concentration and decreased with the additive concentration in slurries for the constant down pressure. A possible mechanism is that the additive adsorbed on the film surfaces during polishing decreases the friction coefficient, hence the pad surface temperature gets lower with increasing the additive concentration. This difference in temperature was more remarkable for the higher concentration of abrasives. In addition, in-situ measurement of spindle motor was carried out during oxide and nitride polishing. The averaged motor current for oxide film was higher than that for nitride film, meaning the higher friction coefficient.

  • PDF