• Title/Summary/Keyword: Abrasive

Search Result 995, Processing Time 0.03 seconds

Magnetic Abrasive Polishing for Internal Face of Stainless Steel Tube using Sludge Abrasive Grain

  • Kim, Hee-Nam;Soh, Dea-Wha;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.77-80
    • /
    • 2004
  • In this paper, we have investigated the characteristics of the magnetic abrasive using sludge on polishing of internal finishing of seamless stainless steel (STS304) tube applying magnetic abrasive polishing. Either white alumina (WA) or green carborundum (GC) grain was used to resin sludge at a low temperature, and the sludge of magnetic abrasive powder was synthesized and crushed into 200 meshes. Surface roughness was measured before and after polishing, and more than 40% of improvement of surface roughness was achieved when WA grain was used under a specific condition. Even though some degree of surface roughness due to deeper scratches still exist, but the result showed a prospective magnetic abrasive polishing using sludge with WA or GC grains.

  • PDF

Magnetic Abrasive Polishing for Internal Face of STS Tube using Sludge Abrasive Grain

  • Kim, Hee-Nam;Soh, Dea-Wha;Hong, Sang-Jeen;Lee, Byung-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.128-132
    • /
    • 2005
  • In this paper, we have investigated the characteristics of the magnetic abrasive using sludge on polishing of internal finishing of seamless stainless steel (STS304) tube applying magnetic abrasive polishing. Either white alumina (WA) or green carborundum (GC) grain was used to resin sludge at a low temperature, and the sludge of magnetic abrasive powder was synthesized and crushed into 200 meshes. Surface roughness was measured before and after polishing, and more than $40\%$ of improvement of surface roughness was achieved when WA grain was used under a specific condition. Even though some degree of surface roughness due to deeper scratches still exist, but the result showed a prospective magnetic abrasive polishing using sludge with WA or GC grains.

Development of Ultraprecision Finishing Technique using Bonded Magnetic Abrasives (결합된 자성연마입자를 이용한 초정밀 피니싱 기술 개발)

  • 윤종학;박성준;안병운
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.59-66
    • /
    • 2003
  • This study suggests the new ultraprecision finishing techniques for micro die and mold parts using magnetic field-assisted polishing. Conventional magnetic abrasives have several disadvantages, which are missing of abrasive particle and inequal mixture between magnetic particle and abrasive particle. Therefore, bonded magnetic abrasive particles are fabricated by several method. For example, plasma melting and direct bonding. Carbonyl iron powder is used as magnetic particle there silicon carbide and alumina are abrasive particles. Developed magnetic abrasives are analyzed using SEM. Feasibility of magnetic abrasive and polishing performance of this magnetic abrasive particles also have been investigated. After polishing, surface roughness of workpiece is reduced from 85.4 ㎚ Ra to 9 ㎚ RA.

A Study on Magnetic Abrasive using Sludge

  • Kim, Hee-Nam
    • Journal of the Speleological Society of Korea
    • /
    • no.82
    • /
    • pp.8-12
    • /
    • 2007
  • In this paper, we have investigated the characteristics of the magnetic abrasive using sludge on polishing of internal finishing of seamless stainless steel tube applying magnetic abrasive polishing. Either green carborundum(GC) grain was used to resin sludge at a low temperature, and the sludge of magnetic abrasive powder was synthesized and crushed into 200 meshes. Surface roughness was measured before and after polishing, and more than 38% of improvement of surface roughness was achieved when grain was used under a specific condition. Even though some degree of surface roughness due to deeper scratches still exist, but the result showed a prospective magnetic abrasive polishing using sludge with green carborundum grains.

A Study on the Behaviors of Abrasive Grains in CBN Wheel (CBN 숫돌의 입자거동에 관한 연구)

  • 김희남
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.91-95
    • /
    • 1996
  • One must observe abrasive grain of grinding wheel and know their behaviors to understand the grinding mechanism. The behaviors of abrasive grain on the wheel surface. such as shapes distributions and changes were studied to make the grinding mechanism clear but the behaviors of abrasive grains on CBN wheel are not known enough. From this paper the working surface of a grinding wheel is observed by photography in which a picture of a wheel surface is taken by the camera through the microscope on the grinding machine and analyzed with the computer.

  • PDF

Effects of diamond abrasive and lubricants on mechanical properties and wearing resistance of microblades (첨가된 다이아몬드 abrasive와 윤활제의 함량이 마이크로블레이드의 내구성과 기계적 특성에 미치는 영향)

  • Kim, Song-Hui;Mun, Jong-Cheol;Kim, Sang-U
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.134-135
    • /
    • 2007
  • Graphite and MoS2 were added respectively as a lubricant to improve the cutting efficiency of micro blades which contains diamond abrasive. Strength, fracture toughness, and life span of micro-blades were observed to decrease with the increase in diamond abrasive and lubricant content. Wearing mode of micro-blades and the cutting efficiency were also found to be affected by the content of diamond abrasive and the addition of lubricants.

  • PDF

Variation of abrasive feed rate with abrasive injection waterjet system process parameters (연마재 투입형 워터젯 시스템의 공정 변수에 따른 연마재 투입량 변화)

  • Joo, Gun-Wook;Oh, Tae-Min;Kim, Hak-Sung;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.141-151
    • /
    • 2015
  • A new rock excavation method using an abrasive injection waterjet system has been developed to enhance the efficiency and reduce the vibration of tunnel excavation. The abrasive feed rate is an important factor for the cutting performance and the economical efficiency of waterjet-based excavation. In this study, various experiments were performed to explore the effects of major process parameters for both the abrasive feed rate and the suction pressure occurring inside the mixing chamber when the abrasives are inhaled. Experimental results reveal that the abrasive feed rate is affected by geometry parameters (abrasive pipe height, length, and tortuosity), abrasive parameters (abrasive particle size), and jet energy parameters (water pressure and water flow rate). In addition, the relation between the cutting performance and the abrasive feed rate was discussed on the basis of the results of an experimental study. The cutting performance can be maximized when the abrasive feed rate is controlled appropriately via careful management of major process parameters.

Development of the Magnetic Abrasive Using Sludge (Sludge를 이용한 자기 연마재 개발)

  • Kim, Hee-Nam;Yun, Yeo-Kwon;Kim, Sang-Baek;Choi, Hee-Sung;Ahn, Hyo-Jong
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.6-10
    • /
    • 2004
  • The magnetic polishing is the useful method to finish using magnetic power of magnet. This method is one of precision polishing techniques and has an aim of the clean technology using for the pure of gas and inside of the clean pipe for transportation. The magnetic abrasive polishing method is not so common for machine that it tis not spreaded widely. There are rarely researcher in this field because of non-effectiveness of magnetic abrasive. Therefore, in ths paper deals with development of the magnetic abrasive using sludge. In this development, abrasive grain WA and GC used to resin bond fabricated low temperature. And magnetic material was fabricated from the sludge which were crused into 200 mesh and average diameter ${\o}$1.2mm ball type. The XRD analysis result show that only WA and GC abrasive and sludge crystal peaks detected which explains resin bond was not any more chemical reaction. From SEM analysis it tis found that WA and GC abrasive and sludge were stron bonding with each other by bond.

Characteristics of Fe-WC composite powders for Magnetic Abrasive (자성연마용 Fe-WC복합지립의 조직특성)

  • Lee, Yeong-Ran;Bae, Seung-Yeol;Gwon, Dae-Hwan;An, In-Seop;Kim, Yu-Yeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.907-911
    • /
    • 2001
  • In order to improve the grindability of magnetic abrasive, Fe-WC magnetic abrasives were made by a plasma melting method after ball milling at various times. This study aims to investigate homogeneously distributed hard phases in Fe matrix and strong bonding between the Fe-matrix and the hard phase. According to XRD, SEM and OM observation, Fe-WC magnetic abrasive powders exhibit the best grindability by plasma melting for 30h ball milling. As a result of magnetic abrasive polishing, the surface roughness, R_{max}$ 5.0$\mu\textrm{m}$, before magnetic abrasive polishing, was reduced to R_{max}$ 2.4$\mu\textrm{m}$. The new magnetic abrasive polishing process is thought to be the useful methods for the automation of three dimensional surface polishing.

  • PDF

Development of The Magnetic Abrasive Using Ba-Ferrite and GC, CBN (Ba-Ferrite와 GC, CBN을 이용한 자기 연마재 개발)

  • Kim, Hee-Nam;Yun, Yeo-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.43-48
    • /
    • 2008
  • The magnetic polishing is the useful method to finish some machinery fabrications by using magnetic power. This method is one of the precision polishing techniques and has an aim for clean technology in the transportation of the pure gas in the clean pipes. The magnetic abrasive polishing method is not so common in the field of machine that it is not known to widely. There are only few researchers in this field because of non-effectiveness of magnetic abrasive. Therefore, in this paper deals with development of the magnetic abrasive using Ba-Ferrite. In this development, abrasive grain GC and CBN has been made by using the resin bond fabricated at low temperature. And magnetic abrasive powder was fabricated from the Ba-Ferrite which was crushed into 200 mesh. The XRD analysis result shows that only GC, CBN and Ba-Ferrite crystal peaks were detected, explaining that resin bond was not any more to contribute chemical reaction. From SEM analysis, we found that GC, CBN abrasive and Ba-Ferrite were strongly bonding with each other.