• Title/Summary/Keyword: Abrasion characteristics

Search Result 254, Processing Time 0.031 seconds

Characterization of $SiO_xC_y$ films deposited by PECVD using BMDSO and Oxygen (HMDSO와 산소를 이용한 PECVD 증착 $SiO_xC_y$필름의 특성연구)

  • 김성룡;이호영
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.182-188
    • /
    • 2001
  • Thin films of $SiO_xC_y$ deposited by means of PECVD(plasma enhanced chemical vapor deposition) using HMDSO(hexamethyldisiloxane)/$O_2$ were characterized. The effects of deposition conditions such as RF power, oxygen flow rate and hydrogen flow rate on the chemical bond structure, atomic composition, surface roughness and wear characteristics of the films were investigated by means of FTIR, XPS, AFM and Hazemeter. The deposition rate of $SiO_xC_y$ was greater than 100 nm/min, which is relatively high rate. The XPS results showed that the carbon content in a deposited film was lower than that of previous studies where different organosilicone materials were used. The optimum wear resistance was attained when RF power was 200 Watt and oxygen flow rate was 100 sccm. This study implies that the $HMDSO/O_2$ system is effective in forming a film with a lower carbon content and good abrasion resistance.

  • PDF

The Preparation and Characteristics of High Solids Acrylic/Polyisocyanate Coatings (하이솔리드 아크릴/폴리이소시아네이트 도료의 제조와 도막 특성)

  • 김대원;황규현;정충호;우종표;박홍수
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.520-528
    • /
    • 2000
  • New high solid acrylic resins (BMHA) containing 70% of solids content have been synthesized. The environmental friendly high solid coatings (BNHS) were prepared by using these acrylic resins and polyisocyanates. The BMHA was obtained by introducing a new functional group, acetoacetoxyethyl methacrylate (AAEM), in the copolymerization of n-butyl acrylate, methyl methacrylate, and 2-hydroxyethyl acrylate. Lowering T$_{g}$ and increasing the AAEM amount in the BMHA resulted in a high value of conversion. There was no difference in conversion with the variations of OH values. In the next step, high solid BNHS coatings were prepared by the curing reaction between BMHA and polyisocyanate at room temperature. The properties of these coatings were evaluated especially for the application of automotive top-coating materials. The introduction of AAEM in the BNHS enhanced the abrasion resistance and solvent resistance of the coatings, which indicated the possible use of BNHS coatings for top-coating materials of automobile..

  • PDF

Short and Long-Term Properties of High-Performance Concrete Containing Silica Fume for Bridge Deck Overlay (실리카퓸을 혼합한 교면 포장용 고성능 콘크리트의 단기 및 장기 성능 평가)

  • Won Jong-Pil;Seo Jung-Min;Lee Chang-Soo;Park Hae-Kyun;Lee Myeong-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.743-750
    • /
    • 2005
  • High performance concrete containing silica fume for use in bridge deck overlay emerged as a viable type of bridge deck overlay that economic advantage in construction. They have gained acceptance in Europe, America and Canada in a relatively short time due to their low cost. In this study, high-performance concretes containing silica fume were tested and evaluated in the laboratory to assess their applicability for use in bridge deck overlay. It was conducted with experiments of mechanical and durability characteristics in compressive strength, flexural strength, chloride permeability, abrasion resistance, repeated freezing and thawing cycles and deicing salt scaling resistance. Laboratory test result describe that high-performance concrete containing silica fume for bridge deck overlay application shows most outstanding capacity.

Fluid Dynamic Bearing Spindle Motors for DLP (DLP용 유체동압베어링 스핀들모터)

  • Kim, Yeung-Cheol;Seong, Se-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.82-90
    • /
    • 2011
  • The small precision spindle motors in the high value-added products including the visible home appliances such as DLP projector require not only the energy conversion devices but also high efficiency, low vibration and sound operation. However, the spindle motors using the conventional ball bearing and sintered porous metal bearing have following problems, respectively: the vibration by the irregularity of balls and the short motor life cycle by the ball's abrasion and higher sound noises by dry contact between shaft and sleeve. In this paper, it is proposed that the spindle motor with a fluid dynamic bearing is suitable for the motor to drive the color wheel of the DLP(digital lightening processor) in the visible home appliances. The proposed spindle motor is composed of the fluid dynamic bearing with both the radial force and the thrust force. The fluid dynamic bearing is solved by the finite element analysis of the mechanical field with the Reynolds equations. The magnetic part of spindle motor, which is a type of Brushless DC Motor, is designed by the electro-magnetic field analysis coupled with the Maxwell equation. And the load capacity and the friction loss of fluid dynamic bearing are analyzed to bearing clearance variation by the fabrication error in designed motor. The design of the proposed motor is implemented by the load torque caused by the eccentricity and the unbalance of the fluid dynamic bearing when the motors are fabricated in error. The prototype of the motor with the fluid dynamic bearing is manufactured, and experiment results show the vibration, sound, and phase current at no load and color wheel load of the motors in comparison. The high performance characteristics with the low vibration, the low acoustic noise and the optimal mechanical structure are verified by the experimental results.

The Reduction Case of Occurrence of Abnormal Wearing of Rail in Compound Curve Part (복심곡선 레일이상마모 발생 저감 사례)

  • Kim, Wan-Sool
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1097-1106
    • /
    • 2007
  • Rail provides running tract for train and broadly and widely conveys the weight of the train exerted from the train wheels that the rail directly supports onto the cross tie and roadbed, and supports the cross-sectional pressure exerted by centrifugal force at curvatures. That is, stationary rail provides surface on which dynamic train runs and guarantees cross-sectional resistance to enable the vertical snake motion of the train wheels as well as to maintain lateral force at curvatures. Rail provides running surface on which train wheels can run smoothly, and secures vertical and lateral force. However, it undergoes continuous destructive reactions (wearing and damages) and abrasion of the cladding by the train wheels. It is obvious that wearing will result when two metal parts act against each other. However, occurrence of abnormal wearing such as rapid wearing of the rail side due to complex generation of various mechanisms at the contact surface between the rail and train wheel flange. It is not easy to simply examine the causes of occurrence of abnormal wearing of rail and train wheel flange. Although countless number of academicians and specialists are conducting researches on abnormal wearing of rail and vertical wearing of train wheels, I believe it is too early to argue on pros and cons due to insufficiency of officially verified information on the issue. This review will be focusing on the examples of repairs that reduced the generation of abnormal wearing of rail by reviewing and improving characteristics of wearing and slack, speed of the train and cant as well as status of lubricator by choosing the compound curves present in the section between the $Anguk{\sim}Jongno3-ga$ Stations of the Route No. 3 among the compound curve tracks of the Seoul Metro Routes No. 3 & 4 at which abnormal wearing is generated continuously.

  • PDF

Quantitative Analysis of Fuel in Engine Oil (엔진오일 내 연료성분 정량분석)

  • Lim, Young-Kwan;Kim, Jiyeon;Na, Yong-Gyu;Kim, Jong-Ryeol
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.714-719
    • /
    • 2017
  • The contaminated engine oil by fuel can intimidate driver safety due to vehicle problems such as engine abrasion, fire and sudden unintended acceleration. In this study, we investigate various functional properties of the engine oil contaminated with fuel. The test results indicated that the engine oil contaminated with fuel had relatively low values of the flash point, pour point, density, kinematic viscosity and cold cranking simulator. Furthermore, a four ball test suggested that the contaminated engine oil increased wear scar due to the poor lubricity. Moreover, SIMDIST (simulated distillation) using ASTM D2887 was applied to analyze fuel characteristics in an engine oil. The SIMDIST analysis result showed a lower carbon number, and the fuel was detected at an earlier retention time than that of using engine oil in chromatogram. Also, it is possible to quantitatively analyze for fuel contents in the engine oil. The SIMDIST method for the diagnosis of oil conditions can be used whether the fuel was involved or not, instead of analyzing other physical properties that require various analytical instruments, large volumes of oil samples, and long analysis time.

A Study of the Effect of Asperity Change on the Shear Strength of Joint Plane (절리면의 거칠기 변화가 전단강도에 미치는 영향)

  • Cho, Taechin;Suk, Jaewook;Lee, Jonggun
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.401-412
    • /
    • 2013
  • Multi-stage shear test has been performed using joint specimens of gneiss, granite and shale to investigate the influence of micro-scale asperity change on the shear strength of joint plane. For each shear test asperity degradation characteristics of joint specimens of different joint surface strength have been analyzed by utilizing the optimum asperity parameter which can reflect the sequential asperity degradation. Elevation of joint surface profile has been measured and both the changes of asperity parameters and micro-scale asperity distribution have been investigated. Two distinctive variation modes of cohesion and friction angle have been delineated and major cause of shear strength parameter change has been analyzed by considering the micro-scale asperity angle change resulting from the abrasion, fracturing and regeneration of micro-scale asperities. Effects of micro-scale asperity variation on the joint shear strength have been also investigated.

Corrosion analysis for application of CCO thin films to industrial equipment materials (산업 설비 재료에 CCO박막의 적용을 위한 부식성 분석)

  • Baek, Min Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.98-103
    • /
    • 2018
  • Many coating technologies have been developed so far to improve the corrosion resistance, strength, abrasion resistance and other surface properties of materials and equipment. Among them, the formation of CCO (CaCoO, then CCO) thin films has been studied and used in the electronic material field. One of the characteristics of CCO thin films is that it is resistant to high temperature heat. Particularly, the method of forming the CCO thin film is relatively simple, and it was judged that it could be introduced into the existing equipment. Therefore, in this study, an experiment and analysis were carried out to determine whether the coating of CCO thin films can be applied to hot dip galvanizing facilities. A CCO thin film was formed on the surface of STS304 base material and oxidized in a Zn fume atmosphere in a $650^{\circ}C$ furnace with an air atmosphere. Oxidation was carried out for 30 days, after which the shape of the CCO thin film was confirmed by SEM and its corrosivity was analyzed through a potentiodynamic polarization experiment.

W Chemical Mechanical Polishing (CMP) Characteristics by oxidizer addition (산화제 첨가에 따른 W-CMP 특성)

  • Park, Chang-Jun;Seo, Yong-Jin;Lee, Kyoung-Jin;Jeong, So-Young;Kim, Chul-Bok;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.46-49
    • /
    • 2003
  • Chemical mechanical polishing (CMP) is an essential dielectric planarization in multilayer microelectronic device fabrication. In the CMP process it is necessary to minimize the extent of surface defect formation while maintaining good planarity and optimal material removal rates. The polishing mechanism of W-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. Thus, it is important to understand the effect of oxidizer on W passivation layer, in order to obtain higher removal rate (RR) and very low non-uniformity (NU%) during W-CMP process. In this paper, we compared the effects of oxidizer or W-CMP process with three different kind of oxidizers with 5% hydrogen peroxide such as $Fe(NO_3)_3$, $H_2O_2$, and $KIO_3$. The difference in removal rate and roughness of W in stable and unstable slurries are believed to caused by modification in the mechanical behavior of $Al_3O_3$ particles in presence of surfactant stabilizing the slurry.

  • PDF

A study on the recycle of reused slurry abrasives (CMP 폐슬러리내의 필터링된 연마 입자 재활용에 관한 연구)

  • Kim, Gi-Uk;Seo, Yong-Jin;Park, Sung-Woo;Jeong, So-Young;Kim, Chul-Bok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.50-53
    • /
    • 2003
  • CMP (chemical mechanical polishing) process remained to solve several problems in deep sub-micron integrated circuit manufacturing process. especially consumables (polishing pad, backing film, slurry, pad conditioner), one of the most important components in the CMP system is the slurry. Among the composition of slurries (buffer solution, bulk solution, abrasive particle, oxidizer, inhibitor, suspension, antifoaming agent, dispersion agent), the abrasive particles are important in determining polish rate and planarization ability of a CMP process. However, the cost of abrasives is still very high. So, in order to reduce the high COO (cost of ownership) and COC (cost of consumables) in this paper, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we have studied the possibility of recycle of reused silica abrasive through the analysis of particle size and hardness. Also, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slurry. As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF