• Title/Summary/Keyword: Abrasion characteristics

Search Result 254, Processing Time 0.029 seconds

Effect of cavitation for electrochemical characteristics in seawater for austenitic 304 stainless steel (오스테나이트계 STS 304강의 해수 내 전기화학적 특성에 미치는 캐비테이션의 영향)

  • Kim, Seong-Jong;Lee, Seung-Jun;Chong, Sang-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.484-492
    • /
    • 2013
  • With the industrial acceleration in a lot of countries of the world, the demand for anti-corrosion and anti-abrasion material increases continuously. Particularly, stainless steel with the fine surface and excellent corrosion resistance is widely used in various industrial fields including ship, offshore structures tidal power plant, and etc. In marine environment, however, it is easy to generate by the corrosion damage by $Cl^-$ ion and cavitation damage due to high rotation speed on stainless steel. Therefore, in this research, the cavitation erosion-corrosion test (Hybrid test) was performed for 304 stainless steel specimen used in the high flow rate seawater environment. And the cavitation damage behavior in the corrosive environment was analyzed overall. The high hardness was shown due to the formation of compressive residual stress by the water cavitation peening effect in cavitation condition. However, high current density in the potentiodynamic polarization experiment presented with the breakdown of the passive film caused by physical impact. Therefore, both electrochemical characteristics and mechanical properties must be taken into account to improve the cavitation resistance in seawater.

Preparation and Characteristics of Photochromic Plastic Lenses by Hard Coatings (하드코팅에 의한 광변색 플라스틱 렌즈의 제조 및 특성)

  • Yu, Dong-Sik;Ha, Jin-Wook;Moon, Byeong-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1635-1641
    • /
    • 2009
  • In this study, we have prepared plastic lenses with both photochromic and hard properties by hard coating, and evaluated their optical properties and surface characteristics. Photochromic effects could be observed on the UV spectra of the closed forms and the visible spectra of the open forms. Visible light transmittance of photochromic lenses was from 83.44% for graphite(GP) to 85.15% for blue(BL) in colourless state and from 71.10% for red(RE) to 79.98% for yellow(YE) in colour state. Red photochromic lens was higher in optical density(${\Delta}$OD) and color difference(${\Delta}$$E^{\ast}_\;{ab}$) than the others. Photochromic lenses applied by hard coating showed good adhesion, hot water resistance, chemical resistance and surface appearance. Also, compared to the uncoated lens, hardness and abrasion resistance were increased. Consequently, this coating system could impart functional properties such as photochromic and hard coating property onto ophthalmic lenses.

Conductive and Mechanical Properties Study of Ti-doped DLC (ta-C:Ti) Film on Semiconductor Probe through Taguchi Bobust Design (다구찌 강건 설계를 통한 반도체 Probe상 Ti 도핑된 DLC(ta-C:Ti) 코팅 막의 전도성 및 기계적 물성 연구)

  • Kim, Do-young;Shin, Jun-ki;Jang, Young-Jun;Kim, Jongkuk
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.274-280
    • /
    • 2022
  • There is a problem that semiconductor probe pin has a short lifespan. In order to solve this problem, Ti having excellent conductivity was doped to tetrahedral amorphous carbon (ta-C) having excellent hardness and abrasion resistance. This experiment was planned through the Taguchi robust design to determine the effect of the control factor of the ta-C:Ti coating film. The effect and contribution of control factors such as Unbalanced Magnetron Sputter(UBM) discharge current, arc discharge current, temperature, and bias voltage on ta-C:Ti characteristics were analyzed from the perspective of electrical and mechanical characteristics. The UBM discharge current was set to 4, 6, and 8 A. The main control factor of thickness and resistance is the UBM discharge current, and the thickness increased and the resistance decreased as the current increased. The decrease in resistance is due to the increase in the Ti content of the ta-C:Ti coating film. The arc discharge current was set to 60, 80, and 100 A. The main control factor of hardness and wear is the arc discharge current, and as the current rises, the hardness increases and the wear area decreases. This is due to the increased ta-C content of the ta-C:Ti coating film. Since resistance and wear are important for Probe Pin, the optimal level is set from the perspective of resistance and wear and a confirmation experiment is conducted.

Evaluation of Lead Exposure Characteristics by Process Category and Activity (작업공정 및 활동에 따른 국내 작업장 납 노출특성 평가)

  • Dohee Lee;Naroo Lee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.1
    • /
    • pp.19-33
    • /
    • 2023
  • Objectives: The purpose of this study is to systematically identify situations where exposure levels are expected to be high by structuring domestic lead measurement data according to exposure processes and activities. Methods: Occupational exposure data on lead was collected from the results of the Evaluation of Reliability of Working Environment Measurement conducted by the government from 2019 to 2020. Lead exposure characteristics were analyzed by PROC (process category) and activity. The Risk Characterization Ratios (RCRs) of five PROCs according to ventilation type and lead content were evaluated using the MEASE (Metal's EASE) model. Results: The exposure data on lead (n=250) was classified into 12 PROCs and 12 activities, with an average concentration of 0.040 mg/m3 and about 14% exceeding the occupational exposure limit of 0.05 mg/m3. Processes with high exposure levels were PROC 7 (industrial spraying), 23 (open processing and transfer operations of molten metal), 24 (mechanical treatment), 25 (welding), and 26 (handling of powder containing lead). The results of evaluating RCR for the five PROCs were greater than 1 or close to 1 even if local exhaust ventilation was used. Conclusions: There is a possibility that the concentration of exposure is high in the casting and tapping of molten metal containing lead, mechanical treatment such as fracturing and abrasion, handling of powder, spraying, battery manufacturing, and waste battery recycling processes. It is necessary to implement chemical management policies for workplaces with such processes.

Application of In-Situ Mixing Hydration Accelerator on Polymer Modified Concrete for Bonded Concrete Overlay (접착식 콘크리트 덧씌우기를 위한 초속경화 첨가재 현장 혼합 폴리머 개질 콘크리트의 적용성 연구)

  • Kim, Young Kyu;Hong, Seong Jae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.85-95
    • /
    • 2015
  • PURPOSES : Recently, bonded concrete overlay has been used as an alternative solution in concrete pavement rehabilitation since its material properties are similar to those of the existing concrete pavements. Deteriorated concrete pavements need rapid rehabilitation in order to prevent traffic jams on Korean expressways. Moreover, speedy and effective repair methods are required. Therefore, the use of bonded concrete overlay with ultra-rapid hardening cement has increased in an effort to reopen promptly the expressways in Korea. However, mobile mixer is required for ultra-rapid hardening cement concrete mixing in the construction site. The use of mobile mixer causes various disadvantages aforementioned such as limitation of the construction supply, open-air storage of mixing materials, increase in construction cost, and etc. In this study, therefore, hydration accelerator in-situ mixing on polymer modified concrete produced in concrete plant is attempted in order to avoid the disadvantages of existing bonded concrete overlay method using ultra-rapid hardening cement. METHODS : Bonded concrete overlay materials using ultra-rapid hardening cement should be meet all the requirements including structural characteristics, compatibility, durability for field application. Therefore, This study aimed to evaluate the application of hydration accelerator in-situ mixing on polymer modified concrete by evaluating structural characteristics, compatibility, durability and economic efficiency for bonded concrete overlay. RESULTS : Test results of structural characteristics showed that the compressive, flexural strength and bond strength were exceed 21MPa, 3.15MPa and 1.4MPa, respectively, which are the target strengths of four hours age for the purpose of prompt traffic reopening. In addition, tests of compatibility, such as drying shrinkage, coefficient of thermal expansion and modulus of elasticity, and durability (chloride ions penetration resistance, freezing-thawing resistance, scaling resistance, abrasion resistance and crack resistance), showed that the hydration accelerator in-situ mixing on polymer modified concrete were satisfied the required criteria. CONCLUSIONS : It was known that the hydration accelerator in-situ mixing on polymer modified concrete overlay method was applicable for bonded concrete overlay and was a good alternative method to substitute the existing bonded concrete overlay method since structural characteristics, compatibility, durability were satisfied the criteria and its economic efficiency was excellent compare to the existing bonded concrete overlay methods.

Experimental Study on the Shearing and Crushing Characteristics of Subaqueous Gravels in Gravel Bed River (수중 자갈의 전단 및 파쇄 특성에 관한 실험적 연구)

  • Kim, So-Ra;Jeong, Sueng-Won;Lee, Gwang-Soo;Yoo, Dong-Geun
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.164-174
    • /
    • 2021
  • The study examines the shearing and crushing characteristics of land-derived subaqueous granular materials in a gravel-bed river. A series of large-sized ring shear tests were performed to examine the effect of shear time and shear velocity on the shear stress characteristics of aquarium gravels with a 6-mm mean grain size. Three different shear velocities (i.e., 0.01, 0.1, and 1 mm/sec) were applied to measure the shear stress under the drained (long-term shearing) and undrained (short-term shearing) conditions. Different initial shear velocities, i.e., 0.01→0.1→1 mm/sec and 0.1→0.01→1 mm/sec, were considered in this study. The test results show that the grain crushing effect is significant regardless of drainage conditions. The shear stress of coarse-grained materials is influenced by initial shear velocities, regardless of the drainage conditions. In particular, particle breakage increases as grain size increases. The shearing time and initial shear velocity are the primary influencing factors determining the shear stress of gravels. The granular materials may be broken easily into particles through frictional resistance, such as abrasion, interlocking and fracture due to the particle-particle interaction, resulting in the high mobility of granular materials in a subaqueous environment.

Improvement of Strength Characteristics in ALC added Silica Powder and Gypsum (규석 분말 및 석고 혼입에 따른 경량기포콘크리트의 강도특성 개선)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.128-135
    • /
    • 2012
  • Autoclaved lightweight concrete, also known as autoclaved aerated concrete(AAC) or autoclaved cellular concrete (ACC), is made with fine silica powder, quik lime, cement, and an Al powder. ALC contains 70~80% air. The lightweight material offers excellent sound and thermal insulation, and like all cement-based materials, is strong and fire resistant. However, ALC have high water absorption, low compressive strength and popout the origin of the low surface strength in its properties. These properties make troubles under construction such as cracking and popout. Thus, this study is to improve the fundamental strength by controls of increasing of admixtures, gypsum and silica powder size. Admixtures make use of metakaolin and silica fume. From the test result, the ALC using admixture have a good fundamental properties compared with plain ALC. Compressive strength, specific strength and abrasion's ratio were improved depending on increasing admixtures ratio's, gypsum and silica powder size.

  • PDF

Effects of Parameters on Abrasion-Resistant Layer of Composite Structure Formed by Evaporation Pattern Casting (소실모형주조법에 의한 내마모 복합조직층 형성에 미치는 공정인자의 영향)

  • Choi, Chang-Young;Mo, Nam-Gyu;Kim, Gun-ho;Yoon, Jong-Cheon;Jung, Yu-Hyun;Kim, Dong-Hyuk;Choi, Yong-Jin;Lee, In-Kyu;Cho, Yong-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.89-94
    • /
    • 2018
  • Due to industrial advancement and environmental concerns, there is a demand for light-weight material parts with high-performance characteristics. In order to meet this demand, various studies have been conducted on developing high-performance castings to achieve composite features by coating only specific parts that require high performance, with dissimilar joining, rather than coating the entire material part. This study analyzed the possibility of forming a local composite layer on an aluminum alloy through evaporation pattern casting, and the effects of parameters on the aluminum alloy.

A Study on the Properties of Epoxy Based Powder Coating with Various Curing Agents (에폭시 분체도료의 경화제 종류에 따른 물성에 관한 연구)

  • Park, Jae-Hong;Shin, Young-Jo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.58-65
    • /
    • 1998
  • Substituted dicyandiamide(Sub-DICY), Accelerated dicyandiamide(Acc-DICY), Trimellitic anhydride(TMA), Pyromellitic dianhydride(PMDA) and Phenolic curing agent(Ph.C.A.) are mainly used for epoxy powder coating curing agent. Various characteristics of epoxy films fully cured by optimum condition such as mechanical properties like $T_g$, tensile strength, elongation at break hardness, abrasion resistance and chemical properties like water absorption, acid resistance, alkali resistance and electrical properties, corrosion resistance are determined by various measuring devices and analyses devices. In conclusion, phenolic curing agent was shown excellent thoughness but severe color change as temperature increased. Acid anhydride has excellent insulation properties and color stability at elevated temperature but lower thoughness and adhesion to substrate. DICY curing agent was shown high water absorption and severe color chance as temperature increased.

  • PDF

Characteristics of Heat Transfer in DLG Platen According to Flow Rate of Coolant (냉각수 유량에 따른 양면 랩그라인딩 정반의 전열특성)

  • Kim, Dongkyun;Kim, Jongyun;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.50-55
    • /
    • 2016
  • Recently, a double-side machining process has been adopted in fabricating a sapphire glass to enhance the manufacturability. Double-side lap grinding (DLG) is one of the emerging processes that can reduce process steps in the fabrication of sapphire glasses. The DLG process uses two-body abrasion with fixed abrasives including pallet. This process is designed to have a low pressure and high rotational speed in order to obtain the required material removal rate. Thus, the temperature is distributed on the DLG platen during the process. This distribution affects the shape of the substrate after the DLG process. The coolant that is supplied into the cooling channel carved in the base platen can help to control the temperature distribution of the DLG platen. This paper presents the results of computational fluid dynamics with regard to the heat transfer in a DLG platen, which can be used for fabricating a sapphire glass. The simulation conditions were 200 rpm of rotational speed, 50℃ of frictional temperature on the pallet, and 20℃ of coolant temperature. The five cases of the coolant flow rate (20~36 l/min) were simulated with a tetrahedral mesh and prism mesh. The simulation results show that the capacity of the generated cooling system can be used for newly developed DLG machines. Moreover, the simulation results may provide a process parameter influencing the uniformity of the sapphire glass in the DLG process.