• Title/Summary/Keyword: Above-knee Amputee

Search Result 7, Processing Time 0.019 seconds

Dynamic Analysis of Stair Climbing for the Above-knee Amputee with Musculoskeletal Models (근골격 모델을 이용한 대퇴절단환자의 계단보행에 대한 동역학 해석)

  • Bae, Tae-Soo;Kim, Shin-Ki;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.133-138
    • /
    • 2007
  • It is important to understand the characteristics of amputee gait to develop more advanced prostheses. The aim of this study was quantitatively to analyze the stair climbing task for the above-knee amputee with a prosthesis and to predict muscle forces and joint moments at musculoskeletal joints by dynamic analysis. The three-dimensional musculoskeletal model of lower extremities was constructed by gait analysis and transformation software for one above-knee amputee and ten healthy people. The measured ground reaction forces and kinematical data of each joint by gait analysis were used as input data during inverse dynamic analysis. Lastly, dynamic analysis of above-knee amputee during stair climbing were performed using musculoskeletal models. The results showed that summed muscle farces of hip extensor of amputated leg were greater than those of sound leg but the opposite results were revealed at hip abductor and knee flexor of amputated leg. We could also find that the higher moments at hip and knee joint of sound leg were needed to overcome the flexion moment caused by body weight and amputated leg. In conclusion, dynamic analysis using musculoskeletal models may be a useful mean to predict muscle forces and joint moments for specific motion tasks related to rehacilitation therapy..

Design and Analysis of Above Knee Prosthetic Leg Using MR Damper (유동모드 MR 댐퍼가 구비된 대퇴의족의 설계 및 해석)

  • Park, Jinhyuk;Kang, Je-Won;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.165-171
    • /
    • 2016
  • A prosthetic knee for above-knee (AK) amputee is categorized into passive and active type. The passive prosthetic knee is generally made by elastic material. Although AK amputee can easily walk by using passive prosthetic leg, knee joint motions are not similar to ordinary persons. The active prosthetic leg can control the knee angle owing to the actuator and microprocessor. However, the active type is not cost-effective and the stability may be lost due to the malfunction of sensors. In order to resolve these disadvantages of passive and active type, a semi-active prosthetic knee which can control the knee angle is proposed in this work. The proposed semi-active one requires a less input energy but provides active type performance. In order to achieve this goal, in this work, a semi-active prosthetic knee using magneto-rheological (MR) damper for AK amputees is designed. The MR damper can support the weight of body by using less energy than actuator of active prosthetic. It can control knee angle by inducing the magnetic field at the time of stance phase. This salient characteristic is evaluated and presented in this work.

Development A Microprocessor Controlled Pneumatic Above-knee Prosthesis (마이크로프로세서 제어 대퇴의지의 개발)

  • Kim, S.K.;Kim, J.K.;Choi, K.W.;Kim, K.H.;Mun, M.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.88-89
    • /
    • 1998
  • In this paper, a transfemoral prosthesis with a microprocessor controlled pneumatic knee developed at KOREC is presented. The resistance of the knee is changed automatically via a microprocessor as the amputee's gait speed changes, so that the prosthetic side of the amputee can follow the sound limb. Gait analysis has been conducted to evaluate the performance of the developed prosthesis and the improvement of the gait pattern including the gait symmetry was observed.

  • PDF

A Study on Isokinetic Strength Ratios of Hip joints in Above-knee Amputees (대퇴절단환자의 고관절 등속성근력비율에 관한 연구)

  • Song, Chang-Ho;Lee, Wan-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.1
    • /
    • pp.74-82
    • /
    • 2003
  • The purpose of this study is to provide guideline of muscle strengthening exercise for preparing ambulation by presenting suitable ratio of muscle power of agonist & antagonist, and that of concentric & eccentric contraction on behalf of amputee's normal ambulation training and it's strenthening as well. 7 Subjects who have femur amputee for experimental group were able to ambulate naturally without inconvenience and 20 adult subjects of comparison group for comparison were considered to be free from disturbance of ambulation. The method of study was to measure the muscle power of hip pint, was to figure out the ratio of agonist & antagonist, concentric contraction & eccentric contraction, and was to find out mean and standard deviation of each measurement. Every numerical value of comparison was tested by Mann-whitney and comparison group's comparison between left & right value was done with t-test. Results are as followings : 1) Extension force was stronger than flexor force and had no remarkable difference(p<0.05) 2) For normal adults, adduction farce was stronger than abduction force and for amputees, abduction force was stronger while adduction force was the same as the normal without showing remarkable difference(p<0.05) According the result above, I make an assumption that maintaining a proper ratio of muscle power on strengthening exercise for amputee's ambulation training & rehabilitation and finally bring out an improvement of transfer and ambulation.

  • PDF

The Variability Analysis of the Kinematic Variables of the Lower Extremities During AK(above-knee) Amputee Gait (대퇴절단 환자의 보행 시 양하지의 운동학적 변인에 대한 variability 분석)

  • Seo, Uk-hyeon;Ryu, Ji-seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.131-142
    • /
    • 2005
  • This study was investigated the stability of the AK amputee gait through analysing the variability on kinematic variables between the sound leg and the prosthetic limb. The one male, AK amputee who could walk for himself with his prosthetic limb was participated in this study. Six cameras of the MCU 240 and the QTM(Qualisys Track Manager) software were used for data collecting in this study. The relative angle of both segments was the difference between the absolute angle of the distal segment and the absolute angle of the proximal segment. The coupling angles between the prosthetic limb and the sound leg were caculated on the thigh Flexion/Extension in relative to the shank Flexion/Extension and the shank Flexion/Extension n relative to the foot Flexion/Extension. In order to evaluate the variability of segment and joint angle, C.V. was used, and to evaluate the variability for coupling angles, the Relative motion calculated by vector coding method of the continuous methods was used. As stated, the gait pattern of the prosthetic limb was almost similar gait pattern of the sound leg, but the prosthetic limb showed that the gait pattern of the sound leg and the prosthetic limb were not stable against the sound leg.

Design of Robotic Prosthetic Leg for Above-knee Amputees (대퇴 절단자들을 위한 로봇 의지의 설계)

  • Yang, Un-Je;Kim, Jung-Yup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.913-922
    • /
    • 2014
  • This paper describes design of a robotic above-knee prosthetic leg which is powered by electrical motors. As a special feature, the robotic prosthetic leg has enough D.O.F.s. For mimicking the human leg, the robotic prosthetic leg is composed of five joints. Three of them are called 'active joint' which is driven by electrical motors. They are placed at the knee-pitch-axis, the ankle-pitch-axis, and the an! kle-roll-axis. Every 'active joint' has enough torque capacity to overcome ground reaction forces for walking and is backlashless for accurate motion generation and high-performance balance control. Other two joints are called 'passive joint' which is activating by torsion spring. They are placed at the toe part and designed by Crank-rocker mechanism using kinematic design approach. In order to verify working performance of the robotic prosthetic leg, we designed a gait trajectory through motion capture technique and experimentally applied it to the robot.

Effects of Prosthetic Mass Distribution on Musculoskeletal System during Amputee Gait (의지 보행시 의지 무게 분포가 근골격계에 미치는 영향)

  • Bae, Tae-Soo;Choi, Hwan;Kim, Shin-Ki;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.130-137
    • /
    • 2007
  • The optimized prosthetic mass distribution was a controversial problem in the previous studies because they are not supported by empirical evidence. The purpose of the present study was to evaluate the effect of prosthetic mass properties by modeling musculoskeletal system, based on the gait analysis data from two above-knee amputees. The joint torque at hip joint was calculated using inverse dynamic analysis as the mass was changed in knee and foot prosthetic components with the same joint kinematics. The results showed that the peak flexion and abduction torque at the hip joint were 5 Nm and 15 Nm when the mass of the knee component was increased, greater than the peak flexion and abduction torque of the control group at the hip joint, respectively. On the other hand, when the mass of the foot component was increased, the peak flexion and abduction torque at the hip joint were 20 Nm and 15 Nm, greater than the peak flexion and abduction torque of the control, respectively. The hip flexion torque was 4.71-fold greater and 7.92-fold greater than the hip abduction torque for the knee mass increase and the foot mass increase on the average, respectively. Therefore, we could conclude that the effect of foot mass increase was more sensitive than that of knee mass increase for the hip flexion torque. On the contrary, the mass properties of the knee and foot components were not sensitive for the hip abduction torque. In addition, optimized prosthetic mass and appropriate mass distributions were needed to promote efficiency of rehabilitation therapy with consideration of musculoskeletal systems of amputees.