• Title/Summary/Keyword: Abnormal behavior detection

Search Result 131, Processing Time 0.033 seconds

Implementation of abnormal behavior detection Algorithm and Optimizing the performance of Algorithm (비정상행위 탐지 알고리즘 구현 및 성능 최적화 방안)

  • Shin, Dae-Cheol;Kim, Hong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4553-4562
    • /
    • 2010
  • With developing networks, information security is going to be important and therefore lots of intrusion detection system has been developed. Intrusion detection system has abilities to detect abnormal behavior and unknown intrusions also it can detect intrusions by using patterns studied from various penetration methods. Various algorithms are studying now such as the statistical method for detecting abnormal behavior, extracting abnormal behavior, and developing patterns that can be expected. Etc. This study using clustering of data mining and association rule analyzes detecting areas based on two models and helps design detection system which detecting abnormal behavior, unknown attack, misuse attack in a large network.

Optimizing of Intrusion Detection Algorithm Performance and The development of Evaluation Methodology (침입탐지 알고리즘 성능 최적화 및 평가 방법론 개발)

  • Shin, Dae Cheol;Kim, Hong Yoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.125-137
    • /
    • 2012
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. For such reason, lots of intrusion detection system has been developed. Intrusion detection system has abilities to detect abnormal behavior and unknown intrusions also it can detect intrusions by using patterns studied from various penetration methods. Various algorithms are studying now such as the statistical method for detecting abnormal behavior, extracting abnormal behavior, and developing patterns that can be expected. Etc. This study using clustering of data mining and association rule analyzes detecting areas based on two models and helps design detection system which detecting abnormal behavior, unknown attack, misuse attack in a large network.

A Novel Abnormal Behavior Detection Framework to Maximize the Availability in Smart Grid

  • Shin, Incheol
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.95-102
    • /
    • 2017
  • A large volume of research has been devoted to the development of security tools for protecting the Smart Grid systems, however the most of them have not taken the Availability, Integrity, Confidentiality (AIC) security triad model, not like CIA triad model in traditional Information Technology (IT) systems, into account the security measures for the electricity control systems. Thus, this study would propose a novel security framework, an abnormal behavior detection system, to maximize the availability of the control systems by considering a unique set of characteristics of the systems.

Abnormal Behavior Monitoring System with YOLO AI Platform (YOLO 인공지능 플랫폼을 이용한 이상행동 감시 시스템)

  • Lee, Sang-Rak;Son, Byeong-Su;Park, Jun-Ho;Choi, Byeong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.431-433
    • /
    • 2021
  • In this paper, abnormal behavior monitoring system using YOLO AI platform was implemented and had superior response characteristics compared to the conventional monitoring system using two-shot detection by using one-shot detection of YOLO system. The YOLO platform was trained using image dataset composed of abnormal behaviors such as assault, theft, and arson. The abnormal behavior monitoring system consists of client and server and can be applicable to smart cities to solve various crime problems if it is commercialized.

  • PDF

A Study on Monitoring System for an Abnormal Behaviors by Object's Tracking (객체 추적을 통한 이상 행동 감시 시스템 연구)

  • Park, Hwa-Jin
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.589-596
    • /
    • 2013
  • With the increase of social crime rate, the interest on the intelligent security system is also growing. This paper proposes a detection system of monitoring whether abnormal behavior is being carried in the images captured using CCTV. After detection of an object via subtraction from background image and morpholgy, this system extracts an abnormal behavior by each object's feature information and its trajectory. When an object is loitering for a while in CCTV images, this system considers the loitering as an abnormal behavior and sends the alarm signal to the control center to facilitate prevention in advance. Especially, this research aims at detecting a loitoring act among various abnormal behaviors and also extends to the detection whether an incoming object is identical to one of inactive objects out of image.

A Study on the Improvement of Bayesian networks in e-Trade (전자무역의 베이지안 네트워크 개선방안에 관한 연구)

  • Jeong, Boon-Do
    • International Commerce and Information Review
    • /
    • v.9 no.3
    • /
    • pp.305-320
    • /
    • 2007
  • With expanded use of B2B(between enterprises), B2G(between enterprises and government) and EDI(Electronic Data Interchange), and increased amount of available network information and information protection threat, as it was judged that security can not be perfectly assured only with security technology such as electronic signature/authorization and access control, Bayesian networks have been developed for protection of information. Therefore, this study speculates Bayesian networks system, centering on ERP(Enterprise Resource Planning). The Bayesian networks system is one of the methods to resolve uncertainty in electronic data interchange and is applied to overcome uncertainty of abnormal invasion detection in ERP. Bayesian networks are applied to construct profiling for system call and network data, and simulate against abnormal invasion detection. The host-based abnormal invasion detection system in electronic trade analyses system call, applies Bayesian probability values, and constructs normal behavior profile to detect abnormal behaviors. This study assumes before and after of delivery behavior of the electronic document through Bayesian probability value and expresses before and after of the delivery behavior or events based on Bayesian networks. Therefore, profiling process using Bayesian networks can be applied for abnormal invasion detection based on host and network. In respect to transmission and reception of electronic documents, we need further studies on standards that classify abnormal invasion of various patterns in ERP and evaluate them by Bayesian probability values, and on classification of B2B invasion pattern genealogy to effectively detect deformed abnormal invasion patterns.

  • PDF

Detection of Crowd Escape Behavior in Surveillance Video (감시 영상에서 군중의 탈출 행동 검출)

  • Park, Junwook;Kwak, Sooyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.731-737
    • /
    • 2014
  • This paper presents abnormal behavior detection in crowd within surveillance video. We have defined below two cases as a abnormal behavior; first as a sporadically spread phenomenon and second as a sudden running in same direction. In order to detect these two abnormal behaviors, we first extract the motion vector and propose a new descriptor which is combined MHOF(Multi-scale Histogram of Optical Flow) and DCHOF(Directional Change Histogram of Optical Flow). Also, binary classifier SVM(Support Vector Machine) is used for detection. The accuracy of the proposed algorithm is evaluated by both UMN and PETS 2009 dataset and comparisons with the state-of-the-art method validate the advantages of our algorithm.

A Study of Video-Based Abnormal Behavior Recognition Model Using Deep Learning

  • Lee, Jiyoo;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.115-119
    • /
    • 2020
  • Recently, CCTV installations are rapidly increasing in the public and private sectors to prevent various crimes. In accordance with the increasing number of CCTVs, video-based abnormal behavior detection in control systems is one of the key technologies for safety. This is because it is difficult for the surveillance personnel who control multiple CCTVs to manually monitor all abnormal behaviors in the video. In order to solve this problem, research to recognize abnormal behavior using deep learning is being actively conducted. In this paper, we propose a model for detecting abnormal behavior based on the deep learning model that is currently widely used. Based on the abnormal behavior video data provided by AI Hub, we performed a comparative experiment to detect anomalous behavior through violence learning and fainting in videos using 2D CNN-LSTM, 3D CNN, and I3D models. We hope that the experimental results of this abnormal behavior learning model will be helpful in developing intelligent CCTV.

Abnormal Traffic Behavior Detection by User-Define Trajectory (사용자 지정 경로를 이용한 비정상 교통 행위 탐지)

  • Yoo, Haan-Ju;Choi, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.25-30
    • /
    • 2011
  • This paper present a method for abnormal traffic behavior, or trajectory, detection in static traffic surveillance camera with user-defined trajectories. The method computes the abnormality of moving object with a trajectory of the object and user-defined trajectories. Because of using user-define based information, the presented method have more accurate and faster performance than models need a learning about normal behaviors. The method also have adaptation process of assigned rule, so it can handle scene variation for more robust performance. The experimental results show that our method can detect abnormal traffic behaviors in various situation.

Real-time Abnormal Behavior Analysis System Based on Pedestrian Detection and Tracking (보행자의 검출 및 추적을 기반으로 한 실시간 이상행위 분석 시스템)

  • Kim, Dohun;Park, Sanghyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.25-27
    • /
    • 2021
  • With the recent development of deep learning technology, computer vision-based AI technologies have been studied to analyze the abnormal behavior of objects in image information acquired through CCTV cameras. There are many cases where surveillance cameras are installed in dangerous areas or security areas for crime prevention and surveillance. For this reason, companies are conducting studies to determine major situations such as intrusion, roaming, falls, and assault in the surveillance camera environment. In this paper, we propose a real-time abnormal behavior analysis algorithm using object detection and tracking method.

  • PDF