• Title/Summary/Keyword: Abnormal State

Search Result 503, Processing Time 0.021 seconds

Antiepileptic Drugs in Children : Current Concept

  • Lee, Jeehun
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.3
    • /
    • pp.296-301
    • /
    • 2019
  • An epileptic seizure is defined as the transient occurrence of signs and/or symptoms due to abnormally excessive or synchronous neuronal activity in the brain. The type of seizure is defined by the mode of onset and termination, clinical manifestation, and by the abnormal enhanced synchrony. If seizures recur, that state is defined as epilepsy. Antiepileptic drugs (AEDs) are the mainstay of treatment. Knowledge about initiating and maintaining adequate AEDs is beneficial for the clinician who treats children with epilepsy. This article will delineate the general principles for selecting, introducing, and discontinuing AEDs and outline guidelines for monitoring adverse effects. In general, AED therapy following a first unprovoked seizure in children is not recommended. However, treatment should be considered after a second seizure. In children and adolescents, if they are seizure-free for at least 2 years, attempts to withdraw medication/s should be made, taking into account the risks vs. benefits for the individual patient. The decision on when and what AED to use should be tailored according to the patient. For optimal treatment, the selection of adequate AEDs can be achieved by considering the precise definition of the patient's seizure and epilepsy syndrome. Continuous monitoring of both therapeutic and adverse effects is critical for successful treatment with AEDs.

Effect of PT/CT contact on the circumferential temperature distribution over a fully voided nuclear channel of IPHWR

  • Sharma, Mukesh;Kumar, Ravi;Majumdar, Prasanna;Mukhopadhyay, Deb
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1314-1321
    • /
    • 2019
  • In case of multiple failure scenario, such as LOCA with ECCS failure, the decay heat continues to raise the reactor core temperature, eventually leading to the core voiding. In such scenario the convective heat transfer becomes poor and the majority of the heat transfer from fuel bundle takes place by radiation mode. During this abnormal working condition, if the channel pressure is less than 1 MPa, the PT sags and come in contact with the CT. This results in high rate of heat transfer from contact location to moderator. The present paper aims to capture the temperature profile over a simulated nuclear channel during such scenario at a steady state temperature of $600^{\circ}C$ (Centre pin) at two different configurations of PT i.e. PT concentric with CT and PT contact with CT. The results showed that the bottom nodes of all the components (Fuel bundle, PT and CT) of the simulated channel was greatly influenced by the PT/CT contact. Moreover, higher temperature were observed at top nodes of the PT and outer pins of the fuel bundle. However, no significant variation in temperatures were obtained in fuel bundle and CT in concentric condition.

Nuclear reactor vessel water level prediction during severe accidents using deep neural networks

  • Koo, Young Do;An, Ye Ji;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.723-730
    • /
    • 2019
  • Acquiring instrumentation signals generated from nuclear power plants (NPPs) is essential to maintain nuclear reactor integrity or to mitigate an abnormal state under normal operating conditions or severe accident circumstances. However, various safety-critical instrumentation signals from NPPs cannot be accurately measured on account of instrument degradation or failure under severe accident circumstances. Reactor vessel (RV) water level, which is an accident monitoring variable directly related to reactor cooling and prevention of core exposure, was predicted by applying a few signals to deep neural networks (DNNs) during severe accidents in NPPs. Signal data were obtained by simulating the postulated loss-of-coolant accidents at hot- and cold-legs, and steam generator tube rupture using modular accident analysis program code as actual NPP accidents rarely happen. To optimize the DNN model for RV water level prediction, a genetic algorithm was used to select the numbers of hidden layers and nodes. The proposed DNN model had a small root mean square error for RV water level prediction, and performed better than the cascaded fuzzy neural network model of the previous study. Consequently, the DNN model is considered to perform well enough to provide supporting information on the RV water level to operators.

Development and Verification of a Fishing Gear Monitoring System based on Marine IoT Technology (해상 IoT 기술 기반 어구 부이 통합 관리시스템 개발 및 검증)

  • Nam, Gyeungtae;Lee, Younggeun;Kim, Namsoo;Lim, Daeseop
    • Journal of Navigation and Port Research
    • /
    • v.45 no.4
    • /
    • pp.181-185
    • /
    • 2021
  • This study deals with the development of a phrase buoy control system that can receive and analyze phrase information using an IoT-based communication network to determine whether a phrase is normal or missing, to manage the current state of the phrase, check the status of the phrase in case of abnormal conditions in the phrase, and conduct management of the phrase. The fishing gear management system and integrated control structure design using an IoT-based communication network were developed, and a system test and verification were carried out to verify the effectiveness of the system.

Flow Characteristics Analysis for the Chemical Decontamination of the Kori-1 Nuclear Power Plant

  • Cho, Seo-Yeon;Kim, ByongSup;Bang, Youngsuk;Kim, KeonYeop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • Chemical decontamination of primary systems in a nuclear power plant (NPP) prior to commencing the main decommissioning activities is required to reduce radiation exposure during its process. The entire process is repeated until the desired decontamination factor is obtained. To achieve improved decontamination factors over a shorter time with fewer cycles, the appropriate flow characteristics are required. In addition, to prepare an operating procedure that is adaptable to various conditions and situations, the transient analysis results would be required for operator action and system impact assessment. In this study, the flow characteristics in the steady-state and transient conditions for the chemical decontamination operations of the Kori-1 NPP were analyzed and compared via the MARS-KS code simulation. Loss of residual heat removal (RHR) and steam generator tube rupture (SGTR) simulations were conducted for the postulated abnormal events. Loss of RHR results showed the reactor coolant system (RCS) temperature increase, which can damage the reactor coolant pump (RCP)s by its cavitation. The SGTR results indicated a void formation in the RCS interior by the decrease in pressurizer (PZR) pressure, which can cause surface exposure and tripping of the RCPs unless proper actions are taken before the required pressure limit is achieved.

Anatomical, Chemical, and Topochemical Characteristics of Transgemic Poplar Down-regulated with O-methyltransferase

  • Wi, Seung Gon;Lee, Kwang Ho;Park, Byung Dae;Park, Young Goo;Kim, Yoon Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.15-24
    • /
    • 2004
  • The present work was undertaken to investigate the anatomical and chemical characteristics of transgenic poplar down-regulated with antisense OMT gene. Also the distribution of lignin in transgenic poplar trees was investigated at cellular level. No visible abnormal phenotype was observed in the fibers and vessel elements of transgenic poplar. Any marked differences in the staining intensities of Wiesner and Mäule color reaction were not identified in the transgenic poplar. TEM micrographs did not show any staining intensities in the cell walls stained with KMnO4. Interestingly, the UV spectroscopy of semi-thin sections exhibited a distinct decrease of lignin absorption at 280 nm in the vessel walls, indicating transgenic poplar wood with lower amount of guaiacyl lignin in vessel elements. Chemical composition of antisense OMT poplar was almost identical to that of wild-type poplar. Klason lignin content of transgenic poplar did not show any significant difference from that of the controls. The solid state NMR spectra revealed the transgenic poplar with only slightly more syringyl lignin than the control. The present work showed that antisense OMT gene constructed in the poplar was not enough to reduce the overall content of Klason lignin, and suggested that the expression of transformation was confined to vessel walls.

Analysis of Installation Environment and Fire Risk of Induction Motors Installed in the Curing Process of a Rubber Product Manufacturing Plant (고무제품제조공장의 가류공정에 설치된 유도전동기의 설치환경 및 화재위험성 분석)

  • Jong-Chan Lee;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.23-29
    • /
    • 2023
  • This study analyzed the fire status of a rubber product manufacturing factory based on 19 years of fire data. Through the analysis of the current state of fire, electrical fires accounted for 58.19%, and among electrical fires, motor fires were the highest at 26.21%. For the motor fire occurrence process, the curing process accounted for the highest rate of 51.9%. Therefore, the installation environment was investigated for the motor in the curing process, and it was confirmed that the motor's maximum ambient temperature exceeded 40℃. In particular, in the case of the motor for curing operation, the motor was installed in a separate motor room, so the average indoor temperature was 48.10℃ and the motor frame's maximum temperature was 72.80℃. In this study, the risk of motor fire was confirmed through a field survey, and a safety management plan was derived by finding a process with high fire risk and conducting an experiment on the motor's installation environment and electrical characteristics in that process.

Grinding Characteristics of Diamond Burs in Dentistry (치과용 다이아몬드 버의 연삭가공 특성)

  • Lee, Keun-Sang;Lim, Young-Ho;Kwon, Dong-Ho;Choi, Man-Yong;Kim, Kyo-Han;Choi, Young-Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.66-72
    • /
    • 1997
  • This paper aims at reviewing the possibility application over normal or abnormal, detection used by AE and the wear characteristics of grinding process. In this study, when diamond bur in dentistry with chosen grinding conditions were tuned at grinding. The variation of grinding resistance and AE signal is detected by the use of AE measuring system. The tests are carried out in accordance with diamond burs and workpiece: arcyl and bovine. According to the experiment results, the following can be expected: AE has the possibility to detect the state normality and abnormality. Hpwever, the grinding resistance measuring can find it difficult to detect it. It can be accurately excepted from AE occurrence pattern in contact start point of diamond bur and bovine, grinding condition and derailment point. It is known that AErms is well compatible with grinding resistance. According to the increase of the material removal rate, the specific energy of the diamond bur is inclined to dectease and the grinding resistance has a tendency to increase.

  • PDF

Special Quantum Steganalysis Algorithm for Quantum Secure Communications Based on Quantum Discriminator

  • Xinzhu Liu;Zhiguo Qu;Xiubo Chen;Xiaojun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1674-1688
    • /
    • 2023
  • The remarkable advancement of quantum steganography offers enhanced security for quantum communications. However, there is a significant concern regarding the potential misuse of this technology. Moreover, the current research on identifying malicious quantum steganography is insufficient. To address this gap in steganalysis research, this paper proposes a specialized quantum steganalysis algorithm. This algorithm utilizes quantum machine learning techniques to detect steganography in general quantum secure communication schemes that are based on pure states. The algorithm presented in this paper consists of two main steps: data preprocessing and automatic discrimination. The data preprocessing step involves extracting and amplifying abnormal signals, followed by the automatic detection of suspicious quantum carriers through training on steganographic and non-steganographic data. The numerical results demonstrate that a larger disparity between the probability distributions of steganographic and non-steganographic data leads to a higher steganographic detection indicator, making the presence of steganography easier to detect. By selecting an appropriate threshold value, the steganography detection rate can exceed 90%.

Development of a Multiple Monitioring System for Intelligence of a Machine Tool -Application to Drilling Process- (공작기계 지능화를 위한 다중 감시 시스템의 개발-드릴가공에의 적용-)

  • Kim, H.Y.;Ahn, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.142-151
    • /
    • 1993
  • An intelligent mulitiple monitoring system to monitor tool/machining states synthetically was proposed and developed. It consists of 2 fundamental subsystems : the multiple sensor detection unit and the intellignet integrated diagnosis unit. Three signals, that is, spindle motor current, Z-axis motor current, and machining sound were adopted to detect tool/machining states more reliably. Based on the multiple sensor information, the diagnosis unit judges either tool breakage or degree of tool wear state using fuzzy reasoning. Tool breakage is diagnosed by the level of spindle/z-axis motor current. Tool wear is diagnosed by both the result of fuzzy pattern recognition for motor currents and the result of pattern matching for machining sound. Fuzzy c-means algorithm was used for fuzzy pattern recognition. Experiments carried out for drill operation in the machining center have shown that the developed system monitors abnormal drill/states drilling very reliably.

  • PDF