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Acquiring instrumentation signals generated from nuclear power plants (NPPs) is essential to maintain
nuclear reactor integrity or to mitigate an abnormal state under normal operating conditions or severe
accident circumstances. However, various safety-critical instrumentation signals from NPPs cannot be
accurately measured on account of instrument degradation or failure under severe accident circum-
stances. Reactor vessel (RV) water level, which is an accident monitoring variable directly related to
reactor cooling and prevention of core exposure, was predicted by applying a few signals to deep neural
networks (DNNs) during severe accidents in NPPs. Signal data were obtained by simulating the postu-
lated loss-of-coolant accidents at hot- and cold-legs, and steam generator tube rupture using modular
accident analysis program code as actual NPP accidents rarely happen. To optimize the DNN model for RV
water level prediction, a genetic algorithm was used to select the numbers of hidden layers and nodes.
The proposed DNN model had a small root mean square error for RV water level prediction, and per-
formed better than the cascaded fuzzy neural network model of the previous study. Consequently, the
DNN model is considered to perform well enough to provide supporting information on the RV water
level to operators.
© 2018 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Acquiring instrumentation signals (also called sensor signals)
from nuclear power plants (NPPs) is essential for their safe long-
term operation. NPPs comprise various facilities and systems
including the reactor coolant system (RCS) (or primary system),
which contains the reactor coolant passing through the reactor
core. Maintaining the integrity of the NPP can be accomplished by
the operators taking necessary action based on the information
from many instruments used to monitor and diagnose its state. As
the safety of the primary system is traditionally a main concern,
various instrumentation signals such as temperature, pressure,
water level, neutron flux in the RCS, and hydrogen gas concentra-
tion in the containment, are considered as safety-critical signals
and accident monitoring variables.

However, acquisition of these safety-critical signals can be
constrained on account of reliability degradation or failure of the
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instruments, and eventually an abnormal state of an NPP can
progress to severe accident circumstances by missing the critical
moment for the operator's decision for mitigation. For instance,
among the safety-critical signals, nuclear reactor vessel (RV) water
level, which is the focus of this study, is directly related to the
reactor core cooling. Although a heated junction thermocouple
(HJTC) is used to measure RV water level during accidents in the
Optimized Power Reactor 1000 (OPR1000), its precision can decline
when bubbles in the RV are adsorbed onto the HJTC due to the
coolant and steam co-existing at the same temperature and
pressure.

Therefore, the RV water level was predicted using deep neural
networks (DNNs) by applying only a few signals from the NPP, to
provide monitoring support information to the operators during
severe accidents. The DNN [1]| employs the basic artificial neural
network (ANN) structure and its performance mainly depends on
its hidden layer scale. Since the number of hidden layers varies
according to the subject or data type, many attempts are required to
determine the optimal number of layers. In this study, the numbers
of hidden layers and nodes of the DNNs were selected using a ge-
netic algorithm (GA) [2,3] which is a technique that mimics the
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evolutionary process of living organisms to obtain a near optimal
result.

Signal data are required as DNNs are mainly trained through
backpropagation and gradient-descent algorithms [4]. However,
actual data of NPP accidents rarely exist. Accordingly, the accident
data were obtained by simulating loss-of-coolant accidents (LOCAs)
at hot- and cold-legs, and steam generator tube (SGT), which may
occur in the NPPs, using the modular accident analysis program
(MAAP) code [5]. These LOCA data simulated by the MAAP code
comprised diverse simulated signals numerically expressed. From
the simulated signals, only three were provided as input to the
DNNs to predict the RV water level as instrumentation signals
cannot be ensured during severe accidents.

In this paper, the prediction performance of the DNN model for
the RV water level by employing limited information was evaluated
and compared with the performance of the cascaded fuzzy neural
network (CFNN) model of the previous study [6].

2. Deep learning method for RV water level prediction

Artificial intelligence (Al) is described as a technology that en-
ables computers to perform tasks such as classification, prediction,
and recognition equally well or better than human beings. Al
methods applied in various industrial fields perform well in object
recognition and classification, voice recognition, and regression
problems. Recently, the performance of deep learning methods was
enhanced by high-performance hardware, such as upgraded cen-
tral or graphics processing units, as well as the utilization of effi-
cient computational techniques for training. For these reasons,
deep learning is generally considered as a state-of-the-art method
among Al methods in a wide range of fields.

In the NPP field, satisfactory state monitoring and diagnosis, and
variable prediction were achieved in many studies by mainly using
representative machine learning models of Al methods. To check
performance of a deep learning method, therefore, DNNs [1] were
used to predict a safety-related variable in this study. Although the
efficacy of Al methods differs depending on the intrinsic charac-
teristics, deep learning methods are fundamentally based on a
neural network structure inspired by the inter-connections be-
tween neurons in the human brain. The DNNs proposed in this
paper can be considered as a simpler method in the aspects of
structure and weight flow as the basic ANN framework is utilized as
it is for DNNs.

2.1. Deep neural networks

DNNs can be briefly described as ANNs with multiple hidden

layers between the input and output layers to enable complex
computation and high performance (refer to Fig. 1). The main fea-
tures of DNNs are that the three types of layers of the ANN structure
are utilized without a need for specific processing layers designed
by the users (e. g. fuzzy neural networks (FNNs) [7]), and it is
trained from the data using a general-purpose learning algorithm
[1]. In this study, the DNNs were trained and optimized by the
backpropagation and gradient descent algorithms [4], which is the
most common form of the machine learning including deep
learning [1]. Specifically, the training and optimization were per-
formed in two steps; forward propagation for calculating predicted
values and errors, and backpropagation for updating the weights.

As indicated in Fig. 2, the sum of the values calculated by
multiplying the input x; and initial weight w; for each node in the
input layer was transferred to the first hidden layer. These values
were used for computing z;, the outputs of the nodes in the first
hidden layer, by applying an activation function.

2 =F (D" (wyxi + b)) (M

where subscripts i and j denote the indexes of the nodes in the
input and first hidden layers, respectively.

From the second hidden layer to the output layer, the outputs of
the nodes were computed using calculated values from the nodes
in a previous layer and the activation function expressed as Eq. (2).
Therefore, it can be the output of the overall DNNs or just the
output of a hidden layer depending on the number of all the layers.

Z) :f<Z(WﬂZj+b1)) (2)

where subscript | denotes the index of the nodes in the following
layer.

The outputs from the nodes in the hidden layers were trans-
ferred from the former layers to the following layers by forward
propagation and revised iteratively until reaching the output layer.
Finally, the values predicted by the DNNs, y, were calculated in the
output layer.

After forward propagation, a cost function was calculated using
the errors between the predicted values y and the reference (or
targeted) values y for backpropagation and gradient descent.
Generally, a bowl-shaped convex function is used as the cost
function to easily approach the global minimum:
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Fig. 1. Example of deep neural networks.



Y.D. Koo et al. / Nuclear Engineering and Technology 51 (2019) 723—730 725

Activation
function

Transferred to
next layer

Output
from a node

FO wx,+b))

v

Fig. 2. Single artificial neuron in the first hidden layer.

Cost(W,b)

Small a

_Large a
Global
minima

Fig. 3. Weight update by gradient descent in the cost function.

n
Cost(W,b) =Es = > (Jk — i) (3)
k=1

where n is the number of applied data.

The weights established through the forward propagation step
were updated using Eq. (4) by propagating Es in Eq. (3) backwards
and calculating the gradient. The gradient descent iterations for the
cost function were stopped when a global minimum, the lowest
point or a point where the weight is optimized for the learning data
in the cost function, was reached (see Fig. 3).

dE
Id S
Wlfj‘»‘?W = wg —a dWij (4)

where the learning rate o (O<a<1) controls the gradient descent
step size for the cost function. If « is large, the learning pace of the
DNNs can be faster, but it can be vulnerable to divergence. On the
contrary it can converge into a local minimum if « is too small.

The training of the DNNs in this study continued until the pre-
defined criterion was met or the maximum number of epochs
was reached.

2.2. Optimized network structure of DNNs using genetic algorithms

Deep learning algorithms including DNNs have many hyper-
parameters in common determining their performances.

Therefore, it is important to find the optimal settings in order to
establish a deep learning model with the desired accuracy. Many
attempts are required to determine these settings since deep
learning methods have more hyper-parameters to be considered
than machine learning methods. Especially, the numbers of hidden
layers and nodes are main parameters influential in the perfor-
mance and their optimal values generally depend on data provided
to the DNNs. In this study, the hidden layers and nodes of the DNNs
were automatically optimized using a GA [2,3], instead of manually
adjusting them.

The GA utilized to find a solution in a search or optimization
problem denotes a technique that artificially models the evolu-
tionary process of living organisms through genetic operations
such as selection, crossover, and mutation. As a generation pro-
ceeds in the GA, populations of chromosomes are arbitrarily formed
and then repeatedly substituted with new populations of chro-
mosomes generated by the genetic operations [8]. In this study, the
optimal numbers of hidden layers and nodes were determined
when the most suitable candidate solution to a problem had been
identified by assessing the chromosomes with the fitness function.
The fitness function was utilized to evaluate how well the chro-
mosomes in the populations fitted the objective by assigning scores
to each chromosome. As indicated in Eq. (5), the scores for the
chromosomes were calculated using the errors from the training
procedure of the DNNs employing learning and validation data sets.
Fig. 4 shows the optimization process of the DNNs using the GA. The
network structure of the DNNs can be optimized over a number of
generations.

F= EXD( - AlEl - AZEl-max - /llEv - AzEu-max) (5)

where E; and E,.,x are the root mean square error (RMSE) and
maximum error for the learning data, and E, and E,.max denote the
RMSE and maximum error for the validation data, respectively. 1,
and A, are weighted values for the two types of the errors. The
weight values depend on how well we can estimate the reactor
vessel water level by using the DNN model. If the RV water level
prediction can be modeled easily (that is, the error values are
small), the weight values can be large for a proper fitness value.
Note that the maximum fitness value is one. Also, 4, is smaller than
Aq as it can be inferred easily.

Although the presented GA technique was computationally
intensive 8], the optimal numbers of hidden layers and nodes were
determined by the GA. In addition, once the optimized network
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Fig. 4. Optimization procedure for DNN model using genetic algorithm.

structure has been determined, the DNN model performs well by
getting close to the global minimum, and its computing time for the
prediction problem considerably decreases.

2.3. Other hyper-parameters of DNNs

As the numbers of hidden layers and hidden nodes were prop-
erly selected using the GA, the DNN model can obtain the required
performance for the objectives. However, the DNN model can be
susceptible to the vanishing gradient problem if its network scale is
too large. As expressed in Fig. 5, vanishing gradient means that the
errors from the training procedure are not well propagated back-
wards from the final hidden layer to the first one through the deep
network. This phenomenon easily happens since activation func-
tions based on multiplication are used in the hidden nodes. S-
shaped curve, outputs of the sigmoid function (or logistic function)
used as an activation function taper off and its gradients become
nearly zero as it passes through the network (refer to Fig. 6).
Eventually, training of DNNs can be constrained in large-scale
networks due to this conventional problem of deep learning.
Thus, the bipolar sigmoid function was used for the activation
function of the DNNs in this study as it is less vulnerable to the
vanishing gradient in the DNN than the logistic function. The range
of derivative of the sigmoid function is between 0 and 0.25 while

that of the bipolar sigmoid, of which output range is similar to the
hyperbolic tangent function, is between 0 and 1 [9]. Thus, an error
calculated from the output layer can be well propagated backward
through deeply stack hidden layers using the bipolar sigmoid.
Moreover, the DNN model with the bipolar sigmoid function
showed better performance than other activation functions
including well-known rectified linear unit function for RV water
level prediction. Fig. 7 indicates the outputs of the bipolar sigmoid
function.

It is known that the performance of DNNs can be improved by
applying a large amount of data to the larger-scale neural networks
[10]. However, the overfitting problem of the model being over-
trained for the learning data (too accurate for the learning data)
can occur even in proper hidden layers. To prevent overfitting,
cross-validation was applied in consideration of the volume of data
used and the network structure optimized by the GA. Cross-
validation is a method separating the data into three types,
namely learning, validation, and test data. The learning data set that
accounts for the highest percentage of the data was used for the
DNN model training and the validation data set was utilized to
check whether overfitting occurs while in training. Generally, the
errors for learning and validation data are the smallest when the
DNN model is optimally trained. If the training of the DNN model
continues and the error for the validation data set starts to increase,
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itis regarded that overfitting occurs beyond this point. The test data
set was used to check how well the developed DNN model fitted
the independent data. Accordingly, the error for the test data set
was considered a measure of performance.

3. Acquired data for DNN model training
3.1. Simulated data for postulated accidents

NPP data are needed to train the DNNs as a RV water level
prediction model with required accuracy and to verify the devel-
oped DNN model after the training. However, data acquisition is
constrained due to a lack of actual accident data of NPPs. Hence
simulated data for the postulated accidents such as LOCAs at the
hot- and cold-legs and steam generator tube rupture (SGTR) were
obtained for the OPR1000 using the MAAP code [5], which is a
software tool used for severe accident analysis for pressurized
water reactors and boiling water reactors. Various NPP accidents
including LOCAs can be simulated according to pre-set accident
scenarios to obtain accident data containing information of the
NPPs under the corresponding accident circumstances. These ob-
tained simulated data sets were considered as reference or target
data and provided as input to the DNNs.

In this study, simulated data were obtained on the LOCAs and
SGTRs in accordance with the accident scenario that the safety
injection tank and containment spray system function well while
the high-pressure and low-pressure safety injection systems did
not function normally [5]. A total number of 600 simulated data,
comprising 200 hot-leg LOCAs, 200 cold-leg LOCAs, and 200
SGTRs, classified according to the break sizes, were generated. For
the LOCAs at the hot- and cold-legs, 30 simulated data were for
the smaller break sizes and the rest of the data were for the larger
break sizes, respectively. In case of the SGTRs the data were
separated into 100 each for the smaller and larger rupture sizes,
respectively.

3.2. Simulated instrumentation signals in the data

The simulated data on the LOCAs and SGTRs from the MAAP
code consisted of time-integrated values of many simulated signals
generated from the facilities in the RCS after the reactor trip using
Eq. (6). Simulated signals (elapsed time after the reactor trip,
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Fig. 8. Prediction of RV water level using DNN model.

estimated LOCA break size, containment pressure, RCS pressure,
sump water level, collapsed RV water level, boiled-up RV water
level, hydrogen concentration in containment) were included in
the simulated data for each postulated accident in this study.

t+AL
X = J g(t)dt, j=1,2 - m (6)
ts

where t; is a reactor trip time, 4t is the integration time span, g;(t)
is the type of signal, and m is the number of the used simulated
signals. The simulated data on the LOCAs at hot- and cold-legs
comprised the time-integrated values from 10 min to 3 days after
the reactor trip. The time-integrated values for the signals from
60 min to 3 days after the reactor trip were included in the SGTR
data.

As acquisition of a variety of the instrumentation signals from
the NPPs can be constrained under severe accident circumstances, a
few signals such as the elapsed time after the reactor trip and the
containment pressure were provided as inputs to the DNNs (see
Fig. 8). The errors of the DNN model were calculated by comparing
the predicted RV water levels from the DNN model, as the outputs,
with the RV water levels of the acquired simulated data, as the
targeted values.

Since the break size and position are not accurately measured
and identified in actual LOCA and SGTR circumstances, these factors
have to be determined. According to previous studies on LOCA
diagnosis [11—13], they can be identified quite accurately. In this
study, thus, the estimated LOCA break size (or the estimated SGTR
size) was considered as an applicable input to predict the RV water
level. In addition, the containment pressure signal was also used as

Table 1

another input for the DNNs as the internal condition of the
containment is expected to be in milder condition than that of the
RV or reactor coolant boundary [6].

For cross-validation, the values of the three simulated signals in
the data were separated into three types of data sets. First, 100 data
points for each signal in the LOCAs and SGTRs were selected as the
test data at fixed intervals. The validation data points were chosen
in a similar way as the test data after the test data points had been
removed. The remaining data were used as the learning data points.

4. Prediction results for RV water level using DNN model
4.1. Prediction performance of the DNN model

As mentioned previously, the test data set was used to verify the
developed DNN model and its performance was measured by its
RMSEs. Table 1 shows the RMSEs and maximum errors of the DNN
model for the test and learning data according to the break sizes at
each accident location. Most of the RMSEs for the test data were a
little larger than those of the learning data while all the maximum
errors for the test data were much smaller than those of the
learning data. Therefore, it is accepted that a well-trained DNN
model was established in this study, which can accurately predict
the RV water level. The numbers of hidden layers and hidden nodes
as optimized by the GA are also shown in Table 1.

Figs. 9 and 10 indicate the prediction performances of the DNN
model for the test data. Fig. 9(a), 9(b), and 9(c) show the prediction
results of the RV water level according to the elapsed time after the
reactor trip for the LOCAs and SGTRs with small break sizes,
respectively. For the SGTR case, the predicted values from the DNN
model (indicated by “crosses”) tracked the targeted values (indi-
cated by “circles”) with relatively small errors. Even though the

Prediction results of RV water level using DNN model and its optimized network structure.

Break size  LOCA location  Test data

Learning data

Number of hidden layers (number of hidden nodes)

RMS error (m)  Maximum error (m)

RMS error (m)

Maximum error (m)

Small Hot-leg 0.11 0.44 0.08
LOCA
Cold-leg 0.09 0.37 0.06
LOCA
SGTR 0.03 0.10 0.03
Large Hot-leg 0.04 0.12 0.03
LOCA
Cold-leg 0.13 0.78 0.07
LOCA
SGTR 0.07 0.33 0.05

0.67 6 (12-20-9-16-18-17)

0.83 6 (18-16-15-10-8-19)

0.37 5 (20-18-12-19-19)

0.40 9 (18-10-7-12-17-18-13-12-16)
1.13 3(20-16-7)

0.38 4(19-14-20-12)
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Fig. 9. Prediction results of DNN model for test data under hot- and cold-leg LOCAs
and SGTR with small break size. (a) Hot-leg LOCA. (b) Cold-leg LOCA. (c) SGTR.
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Fig. 10. Prediction results of DNN model for test data under hot- and cold-leg LOCAs
and SGTR with large break size. (a) Hot-leg LOCA. (b) Cold-leg LOCA. (c) SGTR.
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Table 2
Performance comparison for RV water level prediction using DNN and CFNN models.

Y.D. Koo et al. / Nuclear Engineering and Technology 51 (2019) 723—730

Break size LOCA location Error for test data
DNN model CFNN model
RMS error (m) Maximum error (m) RMS error (m) Maximum error (m)
Small Hot-leg 0.11 0.44 0.32 1.76
LOCA
Cold-leg 0.09 037 0.20 0.79
LOCA
SGTR 0.03 0.10 0.22 0.82
Large Hot-leg 0.04 0.12 0.07 0.64
LOCA
Cold-leg 0.13 0.78 0.15 0.60
LOCA
SGTR 0.07 033 0.50 3.24

DNN model showed some undesirable prediction results arising
from the significant change in RV water level over a short time
interval in all the LOCA cases, no excessively over- or under-
predicted values were present overall. Fig. 10(a), 10(b), and 10(c)
indicate the predicted RV water levels compared with the targeted
values according to the elapsed time after the reactor trip for the
LOCAs and SGTRs with large break sizes.

The RV water level prediction error were analyzed for the test
data according to the accident locations and sizes. Since the errors
are distributed within approximately 25 cm with a 95% confidence
level, it is confirmed that the DNN model provide quite accurate
estimate of the RV water level. The DNN model has good accuracy
especially in the hot-leg LOCA and SGTR cases.

4.2. Comparison of prediction performance with a machine
learning method

The performances of the proposed DNN model and the CFNN
model [6] for the RV water level prediction were compared in this
paper. As listed in Table 2, the DNN model had much smaller RMSEs
and maximum errors than the CFNN model in all the accident cases
and especially in the large SGTR case. It is therefore concluded that
the DNN model is an enhanced method to more accurately predict
the RV water level than the CFNN model. The reason why the DNN
model is superior is that its network structures optimized by the GA
were able to be more effectively trained even using the same data.
That is, the DNN model with the optimized hidden networks was
able to infer a more proper regression function for RV water level
prediction than the CFNN model of which the design parameters
determining a shape of a membership function were optimized by
the GA.

5. Conclusions

In this study, the RV water level was predicted by applying only a
few signals to the DNN model to provide supporting information
under severe accident circumstances as the required safety-critical
instrumentation signals cannot be ensured on account of instru-
ment degradation or failure. As a result of the RV water level pre-
diction, it is concluded that the developed model is accurate as
shown by its small RMSEs and maximum errors for the test data.
Moreover, as the errors of the proposed model were much smaller
than those of the CFNN model, it can be regarded that the DNN
model performs better for the RV water level prediction. These
results were obtained by utilizing the GA for automatically select-
ing the numbers of hidden layers and nodes. Although the DNN
model has different optimized network structures according to the
LOCA break location and size of the postulated accidents, the

developed model was found capable of predicting the RV water
level as a safety-critical signal.

Consequently, the applicability of the DNN model as a method to
provide supporting information for checking the RV water level and
utilizing the severe accident management guideline for mitigation
of severe accidents was confirmed in this study. Furthermore, if
additional studies to predict other accident monitoring variables
are carried out in future, the supplementary applicability of the
deep learning method for a comprehensive accident management
support system can be verified.
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