• Title/Summary/Keyword: Ablation

Search Result 1,053, Processing Time 0.032 seconds

Efficacy of ablation and sclerotherapy for the management of ovarian endometrioma: A narrative review

  • Jee, Byung Chul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.2
    • /
    • pp.76-86
    • /
    • 2022
  • Ovarian cystectomy is the preferred technique for the surgical management of ovarian endometrioma. However, other techniques such as ablation or sclerotherapy are also commonly used. The aim of this review is to summarize information regarding the efficacy of ablation and sclerotherapy compared to cystectomy in terms of ovarian reserve, the recurrence rate, and the pregnancy rate. Several studies comparing ablation versus cystectomy or sclerotherapy versus cystectomy in terms of the serum anti-Müllerian hormone (AMH) decrement, endometrioma recurrence, or the pregnancy rate were identified and summarized. Both ablation and cystectomy have a negative impact on ovarian reserve, but ablation results in a smaller serum AMH decrement than cystectomy. Nonetheless, the recurrence rate is higher after ablation than after cystectomy. More studies are needed to demonstrate whether the pregnancy rate is different according to whether patients undergo ablation or cystectomy. The evidence remains inconclusive regarding whether sclerotherapy is better than cystectomy in terms of ovarian reserve. The recurrence rates appear to be similar between sclerotherapy and cystectomy. There is not yet concrete evidence that sclerotherapy helps to improve the pregnancy rate via in vitro fertilization in comparison to cystectomy or no sclerotherapy.

The Effect of using Gamma Titanium RF Electrodes on the Ablation Volume during the Radiofrequency Ablation Process

  • Mohammed S. Ahmed;Mohamed Tarek El-Wakad;Mohammed A. Hassan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • Radiofrequency ablation (RFA) is an alternative treatment for liver cancer to the surgical intervention preferred by surgeons. However, the main challenge remains the use of RF for the ablation of large tumours (i.e., tumours with a diameter of >3 cm). For large tumours, RFA takes a large duration in the ablation process compared with surgery, which increases patient pain. Therefore, RFA for large tumours is not preferred by surgeons. The currently materials used in RF electrodes, such as the nickeltitanium alloy (nitinol), are characterized by low thermal and electrical conductivities. On the other hand, the use of materials that have high thermal and electrical conductivities, such as titanium aluminide alloy (gamma titanium), produces more thermal energy for tumours. In this paper, we developed a cool-tip RF electrode model that uses nickel-titanium alloy and replaced it with titanium aluminide alloy by using the finite element model (FEM). The aim of this paper is to study the effect of the thermal and electrical conductivities of gamma titanium on the ablation volume. Results showed that the proposed design of the electrode increased the ablation rate by 1 cm3 /minute and 6.3 cm3/10 minutes, with a decrease in the required time ablation. Finally, the proposed model reduces the ablation time and damages healthy tissue while increasing the ablation volume from 22.5% cm3 to 62.5% cm3 in ten minutes compared to recent studies.

A Study on Laser Ablation of Copper Thin Foil by 355nm UV Laser Processing (355nm UV 레이저를 이용한 구리 박판 가공 시 어블레이션에 관한 연구)

  • Oh, Jae-Yong;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.134-139
    • /
    • 2007
  • Usually nanosecond pulsed laser processing of metal is mainly affected by the thermal ablation. Many studies of the theoretical analysis and modeling to predict the laser ablation of metal are suggested on the basis of the photothermal mechanism at higher laser fluence. In this paper, we investigate the etching depth and laser fluence of laser ablation of copper foils and propose the simplified SSB Model(Srinivasan-Smrtic-Babu model) to study the photothermal effect of nanosecond pulsed laser ablation. The experimental results show that the photothermal ablation of the 355nm DPSS $NdYVO_{4}$ laser is useful to process the copper thin foils.

A study on the laser ablation of the copper metal foil by 355nm pulse laser (355nm 펄스 레이저를 이용한 구리 박막의 레이저 어블레이션에 대한 연구)

  • Oh J.Y;Shin B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.667-668
    • /
    • 2006
  • Usually nanosecond pulsing laser ablation of metal is under thermal effect. Many studies of the theoretical analysis and modeling to predict a result of laser ablation of metal are suggested on the basis of the photothermal mechanism. In this paper, we investigate the etching depth and laser fluence of laser ablation of copper films. We proposed the simplified SSB Model(Srinivasan-Smrtic-Babudp model) to study the photothermal effect of nanosecond pulsing laser ablation of copper thin metal. The experimental results were obtained by using the 355nm DPSS $Nd:YVO_4$ laser.

  • PDF

Excimer laser micromachining process assisted by liquid (액체 보조 엑시머 레이저 미세가공 공정)

  • Jang, Deok-Suk;Kim, Dong-Sik
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.06a
    • /
    • pp.60-65
    • /
    • 2006
  • Previous studies demonstrated that laser ablation under transparent liquid can result in ablation enhacement and particle removal from the surface. In this work, the liquid-assisted excimer laser ablation process is examined fer polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), Si, and alumina with emphasis on ablation enhacement, surface topography, and debris formation. In the case of PET and PMMA, the effect of liquid is analyzed both fer thin water film and bulk water. As the ablation enhanement by liquid is already known for Si and alumina, the analysis focuses on surface topography and debris formation resulting from the liquid-assisted laser ablation process. The results show that application of liquid increases the ablation rate of PMMA while that of PET remains unchanged even in the liquid-assisted process. It is also revealed that the liquid can significantly improve the surface quality by reducing the debris deposition. However, the surface roughness is generally deteriorated in the liquid-assisted process. The surface toporaphy is found to be strongly dependent on the method of liquid application, i.e., thin film or bulk liquid.

  • PDF

Laser Ablation : Fundamentals and applications in Micropatterning and Thin Film Formation

  • J. Heitz;D. Bauerle;E. Arenholz;N. Arnold;J.T. Dickinson
    • Journal of Photoscience
    • /
    • v.6 no.3
    • /
    • pp.103-108
    • /
    • 1999
  • We present recent results on ablation mechanism, single-pulse laser micropatterning , pulsed-laser deposition(PLD) and particulates formation accompanying laser ablation, with special emplasis on polymers, in particular polymide, (PI), and polytetrafluoroethylene, (PTFE). Ablation of polymers is described on the basis of photothermal bond breaking within the bulk material. Here, we assume a first order chemical reaction, which can be described by an Arrhenius law. Ablation starts when the density of broken bonds at the surface reaches a certain critical value. Single-pulse laser ablation of polyimide shows a clear-length dependence of the threshold fluence. This experimental result strongly supports a thermal ablation model. We discuss the various possibilities and drawbacks of PLD and describe the morphology, physical properties and applications of PTFE films.

  • PDF

Numerical Study of Ablation Phenomena of Flame Deflector

  • Lee, Wonseok;Yang, Yeongrok;Shin, Sangmok;Shin, Jaecheol
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.10-18
    • /
    • 2021
  • A flame deflector prevents a launch system from thermal damage by deflecting the exhaust flame of the launch vehicle. During the deflection of the flame, the flame deflector is subjected to a high-temperature and high-pressure flow, which results in thermal ablation damage at the surface. Predicting this ablation damage is an essential requirement to ensure a reliable design. This paper introduces a numerical method for predicting the ablation damage phenomena based on a one-way fluid-structure interaction (FSI) analysis. In the proposed procedure, the temperature and convective heat transfer coefficient of the exhaust flame are calculated using a fluid dynamics analysis, and then the ablation is calculated using a finite element analysis (FEA) based on the user-subroutine UMESHMOTION and Arbitrary Lagrangian-Eulerian (ALE) adaptive mesh technique in ABAQUS. The result of such an analysis was verified by comparison to the ablation test result for a flame deflector.

Analysis on Ablation of KL-3 Engine Nozzle Throat Using Image Analysis (영상분석을 통한 KL-3 엔진 노즐목 삭마 경향 분석)

  • Kim, Young-Han;Park, Sung-Jin;Ryu, Chul-Sung;Kim, Yong-Wook;Han, Sang-Yeop;Kim, Byung-Hun
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.51-55
    • /
    • 2003
  • In this research, authors tried to measure the shape of the nozzle throat of KL-3 engines, which is the main engine of KSR-III rocket, to find the increase of nozzle area caused by the thermal ablation. For the purpose, we invented an image-based method instead of the 3D pointer, which is actually inaccessible to such large scale engines. As a result, our equipment showed satisfactory accuracy and performance. Analysing the results of experiments, we find that the pattern of ablation is determined by the spray pattern and that the process of thermal ablation phenomena can be categorized in three regimes - the first regime that the shape of nozzle throat is maintained and ablation is negligible, the second regime that saw-tooth form is developed and ablation is accelerated, and the third regime that the saw-tooth form is already established and the growth of ablation rate is reduced. Also, we find that the ratio of area increase after 60 seconds combustion is +5.82% and conclude that this figure is acceptable and satisfactory.

  • PDF

ABLATION OF PTFE NOZZLE DRIVEN BY ARC PLASMA (아크 플라즈마에 의한 PTFE 노즐 용삭현상)

  • Lee J.C.;Kim Y.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.311-317
    • /
    • 2005
  • It has been the most progressive interruption technique to use the ablation gas from the surface of PTFE nozzle driven by arc plasma during switching process in $SF_6$ gas circuit breakers. This advanced interruption technique can reduce the required mechanical energy to compress and blow the gas for extinguishing the arc plasma between the electrodes due to using the ablation effect instead. In order to consider the phenomena during calculation of switching process, it is required to confirm the principles of ablation from PTFE nozzle as well as of arc plasma during switching process. In this study, we have calculated the switching process considered the ablation of PTFE nozzle driven by arc plasma using multidisciplinary simulation technique and compared the results with the data without the ablation effect. More $50\%$ difference of pressure rise inside expansion chamber has been found from the results and it should be indispensable for this type of computational work to consider and include the ablation effect of PTFE nozzle. Further study on turbulence and radiation will be followed.

  • PDF

Femtosecond Laser Ablation of Polymer Thin Films for Nanometer Precision Surface Patterning

  • Jun, Indong;Lee, Jee-Wook;Ok, Myoung-Ryul;Kim, Yu-Chan;Jeon, Hojeong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • Femtosecond laser ablation of ultrathin polymer films on quartz glass using laser pulses of 100 fs and centered at ${\lambda}=400nm$ wavelength has been investigated for nanometer precision thin film patterning. Single-shot ablation craters on films of various thicknesses have been examined by atomic force microscopy, and beam spot diameters and ablation threshold fluences have been determined by square diameter-regression technique. The ablation thresholds of polymer film are about 1.5 times smaller than that of quartz substrate, which results in patterning crater arrays without damaging the substrate. In particular, at a $1/e^2$ laser spot diameter of $0.86{\mu}m$, the smallest craters of 150-nm diameter are fabricated on 15-nm thick film. The ablation thresholds are not influenced by the film thickness, but diameters of the ablated crater are bigger on thicker films than on thinner films. The ablation efficiency is also influenced by the laser beam spot size, following a $w_{0q}{^{-0.45}}$ dependence.