• 제목/요약/키워드: Abiotic stresses

검색결과 281건 처리시간 0.029초

Arabidopsis Transcription Factor ANAC032 Enhances Salinity and Drought Tolerance

  • Netty Ermawati;Sang Gon Kim;Joon-Yung Cha;Daeyoung Son
    • 한국초지조사료학회지
    • /
    • 제43권1호
    • /
    • pp.42-49
    • /
    • 2023
  • The plant-specific NAC transcription factors control various biological processes, including plant development and stress responses. We have isolated an ANAC032 gene, one of the NAC transcription factor family, which was highly activated by multi-abiotic stresses, including high salt and drought in Arabidopsis. Here, we generated transgenic plants constitutively expressing ANAC032 and its knockout to identify the functional roles of ANAC032 in Arabidopsis under abiotic stress responses. The ANAC032-overexpressing plants showed enhanced tolerance to salinity and drought stresses. The anac032 knockout mutants were observed no significant changes under the high salt and drought conditions. We also monitored the expression of high salt and drought stress-responsive genes in the ANAC032 transgenic plants and anac032 mutant. The ANAC032 overexpression upregulated the expression of stress-responsive genes, RD29A and ERD10, under the stresses. Thus, our data identify that transcription factor ANAC032 plays as an enhancer for salinity and drought tolerance through the upregulation of stress-responsive genes and provides useful genetic traits for generating multi-abiotic stress-tolerant forage crops.

Characterization of CaCOP1 Gene in Capsicum annuum Treated with Pathogen Infection and Various Abiotic Stresses

  • Guo, Jia;Seong, Eun-Soo;Wang, Myeong-Hyeon
    • Journal of Applied Biological Chemistry
    • /
    • 제50권4호
    • /
    • pp.227-233
    • /
    • 2007
  • We characterized a full-length cDNA of CaCOP1 from pepper. Phylogenetic analysis based on the deduced amino acid sequence of CaCOP1 cDNA revealed high sequence similarity to the COP1 gene in Oryza sativa (84% identity). CaCOP1 shares high sequence identity with regulatory protein in Arabidopsis (84%), constitutively photomorphogenic 1 protein in Pisum sativum (81%) and COP1 homolog in Lycopersicon esculentum (79%). CaCOP1 gene exists single copy in the chili pepper genome. Expression of CaCOP1 was reduced in response to inoculation of non-host pathogens. The expression of this gene under abiotic and oxidative stresses was investigated, including 200 mM NaCl, 200 mM mannitol, cold ($4^{\circ}C$), 100 ${\mu}M$ abscisic acid (ABA), and 10 mM hydrogen peroxide ($H_2O_2$). CaCOP1 was induced significantly 3 h after low temperature treatment but not by dehydration or high salinity. Moreover, CaCOP1 was not induced by plant hormone ABA. These observations suggest that CaCOP1 gene plays a role in abiotic stress and may be belong to ABA-independent regulation system.

Variovorax sp. PMC12 균주에 의한 토마토의 생물학 및 비생물학적 스트레스 저항성 증진 (Enhancement of Tomato Tolerance to Biotic and Abiotic Stresses by Variovorax sp. PMC12)

  • 김현수;이신애;김이슬;상미경;송재경;채종찬;원항연
    • 식물병연구
    • /
    • 제24권3호
    • /
    • pp.221-232
    • /
    • 2018
  • 근권세균은 식물 생육과 건강 증진에 중요한 역할을 하며 생물학적 스트레스뿐만 아니라 저온, 고온, 건조 및 염과 같은 비생물적 스트레스에도 내성을 부여한다. 본 연구는 토마토에 생물적 및 비생물적 스트레스를 완화시키는 기능을 가진 식물생장촉진 근권세균(plant growth promoting rhizobacteria, PGPR)을 선발하는 것을 목표로 하였으며 토마토 근권에서 Variovorax sp. PMC12균주를 분리하였다. PMC12균주는 in vitro에서 PGPR의 특성으로 알려진 암모니아, IAA, 시드로포아 및 ACC 탈아민효소를 생성하였다. PMC12 균주를 처리한 토마토는 대조구에 비해 염, 저온 및 건조 스트레스 조건에서 지상부 생체중이 유의적으로 높았다. 또한 PMC12 균주를 처리한 토마토는 Ralstonia solanacearum에 의한 세균성 시들음병에 대한 저항성이 증가되었다. 결과적으로 PMC12 균주는 식물의 비생물적 스트레스 및 생물적 스트레스에 대한 감수성을 감소시키는 유망한 생물학적 방제제 및 생물활성제로 사용될 수 있을 것으로 전망된다.

Diagnoses of Abiotic Stress in Cucumber Plant with Non-destructive Physiological Instruments

  • Sung, Jae Hoo;Suh, Sang Ryong;Chung, Gap Chae;Lee, K.H.
    • Agricultural and Biosystems Engineering
    • /
    • 제2권2호
    • /
    • pp.75-80
    • /
    • 2001
  • This paper describes method to diagnose abiotic stresses such ad low root temperature, low light intensity and high salinity in cucumber plants with several physiological instruments. The stresses could be detected by measuring and analyzing the differences in chlorophyll content, temperature difference between leaf and atmosphere and light absorptance at wavelengths of 480, 560, 710, 1420 and 1650nm. It was concluded that the stresses could be first diagnosed from the 3rd to 10th day after treatment and the overall accuracy of diagnosis was estimated between 25 and 75%. near-infrared spectrometer showed better and earlier detection than the other instruments investigated.

  • PDF

고려인삼으로부터 Cinnamyl Alcohol Dehydrogenase 유전자의 분리 및 특성 (Molecular Cloning and Characterization of the Gene Encoding Cinnamyl Alcohol Dehydrogenase in Panax ginseng C.A. Meyer)

  • 라마;심주선;김유진;정대영;인준교;이범수;양덕춘
    • 한국약용작물학회지
    • /
    • 제17권4호
    • /
    • pp.266-272
    • /
    • 2009
  • Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.95), catalyzes the reduction of hydroxycinnamaldehydes to give hydroxycinnamyl alcohols, or "monolignols," the monomeric precursors of lignin. Lignins are important components of cell walls and lignified secondary cell walls play crucial roles in long distance transport of water and nutrients during plant growth and development and in plant defense against biotic and abiotic stresses. Here a cDNA clone containing a CAD gene, named as PgCAD, was isolated from a commercial medicinal plant Panax ginseng. PgCAD is predicted to encode a precursor protein of 177 amino acid residues, and its sequence shares high homology with a number of other plant CADS. The expression of PgCAD in adventitious roots and hairy roots of P. ginseng was analyzed using reverse transcriptase (RT)-PCR under various abiotic stresses such as salt, salicylic acid, wounding and chilling treatment that triggered a significant induction of PgCAD at different time points within 2-48 h post-treatment. This study revealed that PgCAD may help the plants to survive against various abiotic stresses.

Screening of Multiple Abiotic Stress-Induced Genes in Italian Ryegrass leaves

  • Lee, Sang-Hoon;Rahman, Md. Atikur;Kim, Kwan-Woo;Lee, Jin-Wook;Ji, Hee Chung;Choi, Gi Jun;Song, Yowook;Lee, Ki-Won
    • 한국초지조사료학회지
    • /
    • 제38권3호
    • /
    • pp.190-195
    • /
    • 2018
  • Cold, salt and heat are the most critical factors that restrict full genetic potential, growth and development of crops globally. However, clarification of genes expression and regulation is a fundamental approach to understanding the adaptive response of plants under unfavorable environments. In this study, we applied an annealing control primer (ACP) based on the GeneFishing approach to identify differentially expressed genes (DEGs) in Italian ryegrass (cv. Kowinearly) leaves under cold, salt and heat stresses. Two-week-old seedlings were exposed to cold ($4^{\circ}C$), salt (NaCl 200 mM) and heat ($42^{\circ}C$) treatments for six hours. A total 8 differentially expressed genes were isolated from ryegrass leaves. These genes were sequenced then identified and validated using the National Center for Biotechnology Information (NCBI) database. We identified several promising genes encoding light harvesting chlorophyll a/b binding protein, alpha-glactosidase b, chromosome 3B, elongation factor 1-alpha, FLbaf106f03, Lolium multiflorum plastid, complete genome, translation initiation factor SUI1, and glyceraldehyde-3-phosphate dehydrogenase. These genes were potentially involved in photosynthesis, plant development, protein synthesis and abiotic stress tolerance in plants. However, this study provides new insight regarding molecular information about several genes in response to multiple abiotic stresses. Additionally, these genes may be useful for enhancement of abiotic stress tolerance in fodder crops as well a crop improvement under unfavorable environmental conditions.

Advances in the molecular breeding of forage crops for abiotic stress tolerance

  • Alam, Iftekhar;Kim, Kyung-Hee;Sharmin, Shamima Akhtar;Kim, Yong-Goo;Lee, Byung-Hyun
    • Journal of Plant Biotechnology
    • /
    • 제37권4호
    • /
    • pp.425-441
    • /
    • 2010
  • Forages are the backbone of sustainable agriculture. They includes a wide variety of plant species ranging from grasses, such as tall fescue and bermudagrass, to herbaceous legumes, such as alfalfa and white clover. Abiotic stresses, especially salinity, drought, temperature extremes, high photon irradiance, and levels of inorganic solutes, are the limiting factors in the growth and productivity of major cultivated forage crops. Given the great complexity of forage species and the associated difficulties encountered in traditional breeding methods, the potential from molecular breeding in improving forage crops has been recognized. Plant engineering strategies for abiotic stress tolerance largely rely on the gene expression for enzymes involved in pathways leading to the synthesis of functional and structural metabolites, proteins that confer stress tolerance, or proteins in signaling and regulatory pathways. Genetic engineering allows researchers to control timing, tissue-specificity, and expression level for optimal function of the introduced genes. Thus, the use of either a constitutive or stress-inducible promoter may be useful in certain cases. In this review, we summarize the recent progress made towards the development of transgenic forage plants with improved tolerance to abiotic stresses.

Resistance of Terpenoids to Various Abiotic Stresses in Chamaecyparis obtusa

  • Min, Ji Yun;Park, Dong Jin;Yong, Seong Hyeon;Yang, Woo Hyeong;Seol, Yuwon;Choi, Eunji;Kim, Hak Gon;Choi, Myung Suk
    • 농업생명과학연구
    • /
    • 제53권3호
    • /
    • pp.17-26
    • /
    • 2019
  • Chamaecyparis obtusa is one of the economical conifers planted in Korea due to its good quality timber and wood characteristics. Individuals of C. obtusa containing high terpenes (HT) and low terpenes (LT) were selected for by colorimetric method. The HT of C. obtusa was delayed in wilting against various abiotic stresses compared to the LT plants. The HT group exposed to UV did not significant influence the chlorophyll content, and the chlorophyll value was higher in the HT group than the LT group. Also, chilling treatment (5℃) did not significant influence on the chlorophyll content. However treatment at -4℃ showed relatively low chlorophyll content in the LT group than the HT group. Plants exposure to high temperature was not a difference between the HT and the LT group. However, treatment at 38℃ influenced the chlorophyll content that was increased exposure time-dependently. In salt treatments, chlorophyll in the HT group was lower at high concentrations (300 and 500 mM) of NaCl. However, chlorophyll content increased to slightly in treatment time-dependently, which is 6.7% to 40%. H2O2 treatment has been a negative effect on the chlorophyll content in the HT group. All concentration of H2O2 decreased the chlorophyll content of 5% to 35%. Plants containing high terpenoids were resisted against some abiotic stress such as salt and H2O2. Our results implied that terpenoids could cause various abiotic stress resistance. These results could be utilized for efficient management and biomass production during forest silvicultures.