• 제목/요약/키워드: Abelian L-functions

검색결과 5건 처리시간 0.02초

ON THE SEPARATING IDEALS OF SOME VECTOR-VALUED GROUP ALGEBRAS

  • Garimella, Ramesh V.
    • 대한수학회보
    • /
    • 제36권4호
    • /
    • pp.737-746
    • /
    • 1999
  • For a locally compact Abelian group G, and a commutative Banach algebra B, let $L^1$(G, B) be the Banach algebra of all Bochner integrable functions. We show that if G is noncompact and B is a semiprime Banach algebras in which every minimal prime ideal is cnotained in a regular maximal ideal, then $L^1$(G, B) contains no nontrivial separating idal. As a consequence we deduce some automatic continuity results for $L^1$(G, B).

  • PDF

THE KERNELS OF THE LINEAR MAPS OF FINITE GROUP ALGEBRAS

  • Dan Yan
    • 대한수학회보
    • /
    • 제61권1호
    • /
    • pp.45-64
    • /
    • 2024
  • Let G be a finite group, K a split field for G, and L a linear map from K[G] to K. In our paper, we first give sufficient and necessary conditions for Ker L and Ker L ∩ Z(K[G]), respectively, to be Mathieu-Zhao spaces for some linear maps L. Then we give equivalent conditions for Ker L to be Mathieu-Zhao spaces of K[G] in term of the degrees of irreducible representations of G over K if G is a finite Abelian group or G has a normal Sylow p-subgroup H and L are class functions of G/H. In particular, we classify all Mathieu-Zhao spaces of the finite Abelian group algebras if K is a split field for G.

Riesz and Tight Wavelet Frame Sets in Locally Compact Abelian Groups

  • Sinha, Arvind Kumar;Sahoo, Radhakrushna
    • Kyungpook Mathematical Journal
    • /
    • 제61권2호
    • /
    • pp.371-381
    • /
    • 2021
  • In this paper, we attempt to obtain sufficient conditions for the existence of tight wavelet frame sets in locally compact abelian groups. The condition is generated by modulating a collection of characteristic functions that correspond to a generalized shift-invariant system via the Fourier transform. We present two approaches (for stationary and non-stationary wavelets) to construct the scaling function for L2(G) and, using the scaling function, we construct an orthonormal wavelet basis for L2(G). We propose an open problem related to the extension principle for Riesz wavelets in locally compact abelian groups.

ON THE DENOMINATOR OF DEDEKIND SUMS

  • Louboutin, Stephane R.
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.815-827
    • /
    • 2019
  • It is well known that the denominator of the Dedekind sum s(c, d) divides 2 gcd(d, 3)d and that no smaller denominator independent of c can be expected. In contrast, here we prove that we usually get a smaller denominator in S(H, d), the sum of the s(c, d)'s over all the c's in a subgroup H of order n > 1 in the multiplicative group $(\mathbb{Z}/d\mathbb{Z})^*$. First, we prove that for p > 3 a prime, the sum 2S(H, p) is a rational integer of the same parity as (p-1)/2. We give an application of this result to upper bounds on relative class numbers of imaginary abelian number fields of prime conductor. Finally, we give a general result on the denominator of S(H, d) for non necessarily prime d's. We show that its denominator is a divisor of some explicit divisor of 2d gcd(d, 3).