• Title/Summary/Keyword: Abandoned coal mine area

Search Result 54, Processing Time 0.022 seconds

Distribution Correlation between Heavy Metals Contaminants and PAHs Concentrations of Soils in the Vicinity of Abandoned Mines (폐광산지역 토양에서 중금속과 PAHs 농도 분포 상관관계)

  • Ki, Seong-Kan;Park, Ha-Seung;Jo, Rae-Hyeon;Choi, Kyoung-Kyoon;Yang, Hyun;Park, Jeong-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.239-244
    • /
    • 2014
  • BACKGROUND: Heavy metals contamination of soils in the vicinity of abandoned mines in South Korea has been investigated. However, PAHs contamination rarely has been studied. Both heavy metals and PAHs concentrations have been measured in this study. METHODS AND RESULTS: The samples of soil and sediment were collected from the vicinities of three abandoned coal mines and two abandoned metal mines for analysis of heavy metals contaminants and PAHs concentration from April to September 2012. After preparation of these samples following the Korean standard test method for soils, the concentrations of heavy metals contaminants and PAHs were measured using ICP-OES and GC-MS, respectively. It was observed that the concentration of Arsenic was above the concern level based on 'area 1' suggested by Korean soil conservation law, resulting that Arsenic is the main contaminant in these areas. Also Cd, Cu, Pb and Zn were observed as a partial contaminants. The concentrations of other investigated components including benzo(a)pyrene were less than the concern level. CONCLUSION: The correlation observed between Arsenic (as main contaminant) and PAHs concentrations suggested that the contaminant source and pathway are different for each other. The effect of mine activity on PAHs concentration was rarely observed.

Occurrence and Distribution of Heavy Metals and Natural Radioisotopes Recovered at the Abandoned Coal Mine Tailings (폐석탄광미에서 유래한 중금속과 자연방사능의 분포 및 발생 특성)

  • Chung, Doug-Young;Cho, Il-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.142-149
    • /
    • 2005
  • This investigation was conducted to observe and verify the distribution and their occurrence between heavy metals and natural isotopes in the soil collected at the 40 locations from the abandoned coal mine areas to the sediment of Chungra reservoir located at Chungra-Myon Boryung city, Chungnam. The results of the investigation showed that there were distinctive differences of the contents for the heavy metals and the natural isotopes between the area influenced by the coal mine tailing and the non-influenced area. The amounts of the heavy metals were Pb ($1.32-29.96mg\;kg^{-1}$), Cd ($0.15-0.76mg\;kg^{-1}$), Cu ($0.28-49.67mg\;kg^{-1}$), and Cr ($1.31-13.18mg\;kg^{-1}$) while the averages were Cu ($12.43mg\;kg^{-1}$), Pb ($10.44mg\;kg^{-1}$), Cr ($4.87mg\;kg^{-1}$), Cd ($0.51mg\;kg^{-1}$). The standard deviations of Pb and Cu were significantly higher compared to other heavy metals investigated in this experiment. And the amounts of the natural isotopes measured from the dried soil samples were Pb-210 ($4.87dpm\;g^{-1}$), Th-234 ($3.52dpm\;g^{-1}$), Ra-226 ($2.88dpm\;g^{-1}$), Ra-228 ($7.30dpm\;g^{-1}$), K-40 ($58.06dpm\;g^{-1}$) for all locations whereas Cs-137 which is fall-out by nuclear experiment from atmosphere was rarely found. From these results we found that the amounts of natural isotopes such as Pb-210 (4.41%), Th-234 (3.60%), and Ra-226 (2.09%) were less than those found in the coal-tailing while the proportion of Ra-228 (266%) and K-40 (308%) were significantly higher than those in the coal-tailing. Also occurrence of correlations between the amounts of the heavy metals and the natural isotopes was proportionally related.

Geochemistry and Mineralogy of Mine Drainage Water Precipitate and Evaporite Minerals in the Hwasoon Area (화순 폐탄광지역 광산배수와 침전 및 증발잔류광물에 대한 지구화학적 및 광물학적 연구)

  • 박천영;정연중;강지성
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.391-404
    • /
    • 2000
  • This study investigated the geochemical characteristics of mine drainage discharged from an abandoned coal mine in the Hwasoon area. Surface water samples were collected from 23 locations along the Hancheon creek. The concentration of Zn and Cu in stream waters was highest at low pH (3.53), whereas the content of TDS and TDI was highest at high pH (7.78) due to the concentration of Ca, $HCO_3$ and $SO_4$. At the upstream site, the Ba, Fe, Mn, Zn, and $SO_4$ contents were relatively high but decreased significantly with the distance from the coal mine. On the contrary, the Na and $NO_3$ contents were low at the upstream site but increased downstream. Yellow precipitate material collected in the Hancheon consisted mainly of iron and LOI. This yellow precipitate was heated from 100 to $900^{\circ}C$ for 1 hour. With increasing temperature, the intensity of hematite peaks were sharply produced in X-ray pattern and the absorption band Fe-O of hematite increased in IR due to dehydration and melting. The yellow to brown precipitate and evaporite materials were collected by a air-dry from the acid mine water at the laboratory. After drying, the concentration of ions in the acid water samples increased progressively in oversaturation with respect to either gypsum, ferrohexahydrite or quenstedetite. The X-ray powder diffraction studies identified that the precipitated and evaporated materials after drying were well crystallized gypsum, ferrohexahydrite and quenstedetite. Diagnostic peaks used for identification of gypsum were the 7.65, 4.28, 3.03, 2.87 and 2.48$\AA$ peaks and those for ferrohexahydrite were the 5.46, 5.12, 4.89, 4.44, 4.05, 3.62, 3.46, 3.40, 3.20, 3.03, 2.94, 2.53, 2.28, 2.07, 1.88 and 1.86${\AA} peaks. The IR spectra with OH-stretching, deformation of $H_2O$and ${SO_4}^{2-}$stretching vibration include the existence of gypsum, ferrohexahydrite and quenstedetite in the precipitated and evaporite materials. In the SEM and EDS analysis for the evaporite material, gypsum with well-crystallized, acicular, and columnar form was distinctly observed.

  • PDF

Study on the principle factors related to ground subsidence at Abandoned Underground Coal Mine Area using probability and sensitivity analysis (확률기법과 민감도 분석을 이용한 폐탄광지역의 지반침하 관련요인 고찰)

  • Ahn, Seung-Chan;Kim, Ki-Dong
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.296-300
    • /
    • 2007
  • 본 연구에서는 강원도 정선지역 및 삼척지역의 폐탄광 지역에서 관측된 지반침하지역의 공간자료와 각종 지반침하 관련요인을 분석하여, 지질학적구조와 지역적 특성이 상이한 지역에서 지반침하에 직접적인 영향을 주는 공통요인을 찾아내고자 하였다. 연구지역의 지반침하 관련요인들에 대해 GIS(Geographic Information System)를 이용하여 래스터 데이터베이스를 구축하고 모든 요인을 이용하여 분석한 위험지역과 하나의 요인씩 제거하며 분석한 위험지역을 비교하는 민감도 분석 (Sensitivity analysis)을 통해 지반침하와 연관성이 높은 요인을 추출하였다. 민감도 분석은 서로 다른 두 지역에 대해 수행하여 그 결과를 비교하였으며, 갱으로부터의 수평거리,RMR(Rock Mass Rating), 지하수 심도가 지반침하에 영향을 주는 공통요인으로 분석되었다. 본 연구결과, 폐탄광지역의 지반침하에 공통적으로 영향을 끼치는 주 요인을 구할 수 있었으며, 타 지역에서 지반침하 예측시 기존 연구에서 사용한 요인들의 데이터를 전부 구하지 못하는 경우에도 최소한의 필요한 요인을 정할 수 있으며 지반침하 예측의 효율성을 높일 수 있을 것이라 기대된다.

  • PDF

Geochemistry of Stream Water around the Abandoned Boeun Coal Mine, Hoenam Area (보은제일폐탄광 주변 하천수의 지구화학적 특징)

  • Jeon, Seo-Ryeong;Shin, Ik-Jong;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2001
  • Stream water chemistry in the abandoned Boeun Jeil coal mine area was studied for a period of 3 months, including rainy and dry season. The stream waters were a nearly neutral and slightly alkali condition, and $Mg-SO_4$ type with Mg>Ca>Na>K and $SO_4>HCO_3>Cl>NO_3$. Chemical composition of the stream water was quite irregular during the experimental period. Concentrations of Na, K, $HCO_3$, U, Sr, and Cr decreased by $10{\sim}30%$ during rainy season, caused by dilution effects with rain. The concentration of Ca, Mg, $NO_3$, Cd, and Co increased during the rainy season, caused by more easily dissolved from bedrocks or mine drainage with slightly acidic condition than dry season. The stream water was enriched in Mg, Ca, $HCO_3$, $SO_4$, Al, Fe, Zn, Ni, Co, Cr, Cd, Sr and U. Concentrations of Na, Mg, Ca, $SO_4$, $HCO_3$, Fe, Zn, Ni, Sr, and U decreased linearly with distance from the mine adit. These elements were strongly controlled by dilution of unpolluted water influx and/or adsorption on the clay minerals and iron oxyhydroxide precipitates. This mine area exhibited two main weathering processes ; 1) oxidation with acidification derived from Fe sulphides, and 2) pH buffering due to Ca and Mg carbonate dissolution. This weathering processes were followed by adsorption of metals on iron oxyhydroxides and precipitation.

  • PDF

Stabilization of Two Mine Drainage Treated Sludges for the As and Heavy Metal Contaminated Soils (오염토양 특성별 광산배수처리슬러지의 비소 및 중금속 안정화)

  • Tak, Hyunji;Jeon, Soyoung;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.10-21
    • /
    • 2022
  • In the South Korea, 47% of abandoned mines are suffering from the mining hazards such as the mine drainage (MD), the mine tailings and the waste rocks. Among them the mine drainage which has a low pH and the high concentration of heavy metals can directly contaminate rivers or soil and cause serious damages to human health. The natural/artificial treatment facilities by using neutralizers and coagulants for the mine drainage have been operated in domestic and most of heavy metals in mind drainage are precipitated and removed in the form of metal hydroxide, alumino-silicate or carbonate, generating a large amount of mine drainage treated sludge ('MDS' hereafter) by-product. The MDS has a large surface area and many functional groups, showing high efficiency on the fixation of heavy metals. The purpose of this study is to develop a ingenious heavy metal stabilizer that can effectively stabilize arsenic (As) and heavy metals in soil by recycling the MDS (two types of MDS: the acid mine drainage treated sludge (MMDS) and the coal mine drainage treated sludge (CMDS)). Various analyses, toxicity evaluations, and leaching reduction batch experiments were performed to identify the characteristics of MDS as the stabilizer for soils contaminated with As and heavy metals. As a result of batch experiments, the Pb stabilization efficiency of both of MDSs for soil A was higher than 90% and their Zn stabilization efficiencies were higher than 70%. In the case of soil B and C, which were contaminated with As, their As stabilization efficiencies were higher than 80%. Experimental results suggested that both of MDSs could be successfully applied for the As and heavy metal contaminated soil as the soil stabilizer, because of their low unit price and high stabilization efficiency for As and hevry metals.

Removal of Hydrogen Sulfide by Biofilter Media (담체 종류에 따른 황화수소의 제거특성)

  • Cha, Gyusuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.41-45
    • /
    • 2007
  • It is very important that selection of packing media with large surface area, high limited back pressure in biofilter. The object of this study is the isolation of sulfur-oxidizing bacteria and the removal of hydrogen sulfide in biofilter by media. This investigation led to the following results: 1) we isolated Thiobacillus sp. IW. at an abandoned coal mine in Hwasun, Jeonnam Province. 2) The inorganic media showed better results than the organic media from experiments looking at removal characteristics and changes in pressure drop using various media. 3) Among the inorganic media, fibril and PU media showed best performance.

  • PDF

A Study on the Evaluation Method of Subsidence Hazard by a Diffusion Equation and its Application (확산방정식을 이용한 침하 위험도 평가 기법 및 그 적용)

  • Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong;Kim, Taek-Kon;Park, Joon-Young
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.372-380
    • /
    • 2007
  • Surface damage due to subsidence is an inevitable consequence of underground mining, which may be immediate or delayed for many years. The surface damage due to abandoned underground mine is observed to be two subsidence types such as simple sinkhole or trough formation to a large scale sliding of the ground from with in the subsided area. An evaluation of the risk of a subsidence occurrence is vital in the areas affected by mining subsidence. For a subsidence prediction or a risk evaluation, there has been used various methods using empirical models, profile functions, influence functions and numerical models. In this study, a simple but efficient evaluation method of subsidence hazard is suggested, which is based on a diffusion theory and uses just information about geometry of caving and topography. The diffusion model has an analogous relationship with granular model which can explain a mechanism of subsidence. The diffusion model is applied for the evaluation of subsidence hazard in abandoned metal and coal mines. The model is found to be a simple but efficient tool because it needs information of geometry of caving and gangway and the topography.

Evaluation of Heavy Metal Absorption Capacity of Native Plant Species in an Abandoned Coal Mine in South Korea (폐석탄광산지역에 적용가능한 자생식물종의 중금속 흡수능력 평가)

  • Yang, Keum Chul
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.290-298
    • /
    • 2021
  • This study was conducted to evaluate the possibility of applying phytoremediation technology by investigating soil and native plants in waste coal landfills exposed to heavy metal contamination for a long period of time. The ability of native plants to accumulate heavy metals using greenhouse cultivation experiments was alse evaluated. Plants were investigated at an abandoned coal mine in Hwajeolyeong, Jeongseon, Gangwon-do. Two species of native plants (Carex breviculmis. R. B. and Salix koriyanagi Kimura ex Goerz.) located in the study area and three Korean native plants (Artemisia japonica Thunb. Hemerocallis hakuunensis Nakai., and Saussurea pulchella (Fisch.) Fisch.) were cultivated in a greenhouse for 12 weeks in artificially contaminated soil. Soils contaminated with arsenic and lead were generated with arsenic concentration gradients of 25, 62.5, 125, and 250 mg kg-1 and lead concentration gradients of 200, 500, 1000, and 2000 mg kg-1, respectively. Results showed that none of the five plants could survive at high arsenic concentration treatment (125 and 250 mg kg-1) and some plants died in 2000 mg kg-1 lead concentration treatment soil. The plant translocation factor (TF) was highest in H. hakuunensis in arsenic treatments, and A. japonica in lead treatments, respectively. The bioaccumulation factor (BF) of plants was more than 1 in all species in arsenic treatment, whereas it was highest in H. hakuunensis. BF for all species was less than 1 in lead treatment. Particularly, in 2000 mg kg-1 concentration lead treatment, A. japonica accumulated more than 1000 mg kg-1 lead and was expected to be a lead hyperaccumulator. In conclusion, A. japonica and H. hakuunensis were excellent in the accumulation of arsenic heavy metals, and S. koriyanagi was excellent in lead accumulation ability. Therefore, the above mentioned three plants are considered to be strong contenders for application of the phytoremediation technology.

A Study on Changes in Heavy Metal Contents in Concrete Prepared Using Coal Ashes (석탄재의 콘크리트 활용에 따른 중금속 함량변화 연구)

  • Lee, Jinwon;Choi, Seung-Hyun;Kim, Kangjoo;Kim, Seok-Hwi;Moon, Bo-Kyung
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.371-379
    • /
    • 2018
  • In many countries, recycling coal ashes as backfill materials for subsided lands, abandoned mine tunnels, and road pipeline constructions by making low-strength concretes with minimal amounts of cement is frequently considered for massive treatment of coal ashes. This study investigates the variation of heavy metals in the concrete test pieces prepared for the cases of using only Portland cement as binding material, fly ash as a replacement of the cement, sand as aggregates, and disposed ashes in the ash ponds as a replacement of aggregates. Heavy metal contents were measured based on the aqua regia extraction technique following the Korean Standard for Fair Testing of Soil Contamination and the influences of each materials on the total heavy metal contents were also assessed. Results show that the cement has the highest Cu, Pb, and Zn concentrations than any other materials. Therefore, the test pieces show significant concentration decreases for those metals when the cement was replaced by fly ash. Ponded ash shows low concentrations relative to fly ash in most of the parameters but shows higher Cu and Ni, and lower Pb levels than the sand aggregate. In overall, heavy metal levels of the test pieces are regulated by mixing among the used materials. Test pieces prepared during this study always show concentrations much lower than the Worrisome Level of Soil Contamination (Area 1), which was designated by the Soil Environment Conservation Act of Korea.